Referencing commit a1837135e0
Hardware
--------
SoC: Qualcomm Atheros QCA9558
RAM: 128M DDR2 (Nanya NT5TU64M16HG-AC)
FLASH: 128M SPI-NAND (Spansion S34ML01G100TFI00)
WLAN: QCA9558 3T3R 802.11 bgn
ETH: Qualcomm Atheros QCA8337
UART: 115200 8n1
BUTTON: Reset - WPS - "Router" switch
LED: 2x system-LED, 2x wlan-LED, 1x internet-LED,
2x routing-LED
LEDs besides the ethernet ports are controlled
by the ethernet switch
MAC Address:
use address(sample 1) source
label cc:e1:d5:xx:xx:ed art@macaddr_wan
lan cc:e1:d5:xx:xx:ec art@macaddr_lan
wan cc:e1:d5:xx:xx:ed $label
WiFi4_2G cc:e1:d5:xx:xx:ec art@cal_ath9k
Installation from Serial Console
------------
1. Connect to the serial console. Power up the device and interrupt
autoboot when prompted
2. Connect a TFTP server reachable at 192.168.11.10/24
to the ethernet port. Serve the OpenWrt initramfs image as
"openwrt.bin"
3. Boot the initramfs image using U-Boot
ath> tftpboot 0x84000000 openwrt.bin
ath> bootm 0x84000000
4. Copy the OpenWrt sysupgrade image to the device using scp and
install it like a normal upgrade (with no need to keeping config
since no config from "previous OpenWRT installation" could be kept
at all)
# sysupgrade -n /path/to/openwrt/sysupgrade.bin
Installation from Web Interface
------------
To flash just do a firmware upgrade from the stock firmware (Buffalo
branded dd-wrt) with squashfs-factory.bin
Signed-off-by: Edward Chow <equu@openmail.cc>
Userspace handling is deprecated.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17311
Signed-off-by: Robert Marko <robimarko@gmail.com>
Userspace handling is deprecated. MAC address stuff needs to remain
handled in userspace as it's encrypted. Maybe an NVMEM driver can be
written in the future...
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17276
Signed-off-by: Robert Marko <robimarko@gmail.com>
This is using mac-base and so a 0 needs to be added.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17274
Signed-off-by: Robert Marko <robimarko@gmail.com>
The original ar71xx version of this device used 1002 as mac address for
both ethernet and wireless. The ath79 version inexplicably changes this
to 2, which seems to be done nowhere else in ath79, indicating it's
bogus.
Restore previous ar71xx assignment. 1002 is used as an ethernet
interface with some other devices as well.
Also remove the bogus caldata userspace extraction. The size is bogus
and it's already handled in dts.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17083
Signed-off-by: John Crispin <john@phrozen.org>
Upstream uses devm_reset_control_array_get_optional_shared, which does
not use names. reset-names is also not specified in the documentation.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
Both generic-ehci.yaml and generic-ohci.yaml state that phy-names is to
only be usb.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
This matches the upstream PHY driver, which removed it.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17118
Signed-off-by: John Crispin <john@phrozen.org>
This is a simple conversion to dts.
68ac3f2cdd states that the 5ghz wifi address is calculated from ART 0
+ 2.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17066
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
1002 and 5006 are default addresses as part of the calibration data.
Don't bother specifying them explicitly.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17082
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The KuWFi N650 is a 5GHz outdoor wireless bridge based on QCA9563.
Specs
=====
CPU: QCA9563, 775MHz
RAM: 128MiB
Flash: 16MiB
Wireless: QCA9888 (5GHz only)
Ethernet: 2x GBit (via QCA8337), 48V passive PoE
Installation
============
From OEM firmware
-----------------
The OEM firmware has telnet enabled by default. If not, it can be enabled
from the firmware web interface. You need a TFTP server on your computer
and the OpenWrt factory image should be available as "n650factory.bin".
It is assumed that your computer has the IP 192.168.1.1 and the N650
192.168.1.20 (default IP address).
1. Connect via Telnet to the device and log in with the default credentials
"admin:admin"
2. Exploit the limited interface by typing "ps & /bin/sh"
3. Press <ENTER> to start the shell
4. Enter the following commands:
$ cd /tmp
$ tftp -r n650factory.bin -g 192.168.1.1
$ cat << EOF > /tmp/openwrt.sh
#!/bin/sh
IMAGE_NAME="\$1"
if [ ! -e \${IMAGE_NAME} ]; then
echo "Image file not found: \${IMAGE_NAME}"
exit 1
fi
. /usr/sbin/common.sh
kill_remaining TERM
sleep 3
kill_remaining KILL
run_ramfs mtd write \${IMAGE_NAME} firmware
sleep 2
reboot -f
EOF
$ chmod +x /tmp/openwrt.sh
$ /tmp/openwrt.sh n650factory.bin
Once the device reboots, it should load OpenWrt.
From UART
---------
UART installation is possible since the serial header is already soldered
on. The pinout is GND - Tx - Rx - VCC from top to bottom (RJ45 ports are
at the bottom). Connect with 115200 8N1.
First, boot OpenWrt from TFTP. Enter the following commands in the U-Boot
shell, assuming your computer has the IP address 192.168.1.1 and a TFTP
server running where the initramfs image is provided as n650.bin:
setenv ipaddr 192.168.1.20
setenv serverip 192.168.1.1
tftpboot 0x84000000 n650.bin
bootm
Once booted, transfer -loader.bin and -sysupgrade.bin images to the device
at /tmp. Enter the following commands, replacing the filenames:
mtd write /tmp/loader.bin loader
sysupgrade /tmp/sysupgrade.bin
Reboot and OpenWrt should load from flash.
Back to Stock
-------------
Back to stock is only possible if you saved a partition backup before
installing OpenWrt. Assuming you have fullbackup.bin covering the whole
flash, you need to prepare the image as follows:
$ dd if=fullbackup.bin of=fwconcat0.bin bs=65536 skip=4 count=212
$ dd if=fullbackup.bin of=loader.bin bs=65536 skip=216 count=1
$ dd if=fullbackup.bin of=fwconcat1.bin bs=65536 skip=217 count=22
$ cat fwconcat0.bin fwconcat1.bin > firmware.bin
Transfer firmware.bin and loader.bin to the OpenWrt device. First, flash
loader.bin to mtd device loader, then force sysupgrade:
$ mtd write loader.bin loader
$ sysupgrade -F firmware.bin
The reason for the two-step process is the way the flash layout is designed
for OpenWrt in contrast to the OEM firmware partition.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Link: https://github.com/openwrt/openwrt/pull/17089
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The recently added AP15C dts file only differs by the definition of the
reset button. Unify the shared definition into a dtsi to reduce code
duplication.
Signed-off-by: Christoph Krapp <achterin@gmail.com>
Tested-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Link: https://github.com/openwrt/openwrt/pull/16998
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This reverts commit 70e41d0205.
"ethaddr" is stored into the "u-boot-env" (stock: "Config") partition
and it's quoted with double-quotations, but that format is not supported
by the current NVMEM u-boot-env driver (and mac_pton() function) and the
MAC address won't be parsed to byte array.
This causes random MAC addresses on the adapters, so revert the above
commit.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17116
Signed-off-by: Robert Marko <robimarko@gmail.com>
TP-Link CPE710-v2 is an outdoor wireless CPE for 5 GHz with one Ethernet
port based on the AP152 reference board. Compared to the CPE710-v1, the
only change observed in hardware is that the mdio address of the ethernet
physical changed from 0x4 to 0x0.
Specifications:
- SoC: QCA9563-AL3A MIPS 74kc @ 775MHz, AHB @ 258MHz
- RAM: 128MiB DDR2 @ 650MHz
- Flash: 16MiB SPI NOR Based on the GD25Q128
- Wi-Fi 5Ghz: ath10k chip (802.11ac for up to 867Mbps on 5GHz wireless
data rate), based on the QCA9896
- Ethernet: one 1GbE port
- 23dBi high-gain directional 2×2 MIMO parabolic antenna
- Power, LAN, WLAN5G Blue LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI or through TFTP
To get to TFTP recovery just hold reset button while powering on for around
30-40 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Tim Noack <tim@noack.id>
Link: https://github.com/openwrt/openwrt/pull/16637
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is done in preparation of adding support for the CPE710-v2,
which uses a similiar device tree.
Signed-off-by: Tim Noack <tim@noack.id>
Link: https://github.com/openwrt/openwrt/pull/16637
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
These get dynamically set based on compiler version. Not relevant for
targets.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16770
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The Sophos AP15C uses the same hardware as the AP15, but has a reset button.
Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author Andrew Powers-Holmes <andrew@omnom.net>
Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)
Unique to AP15C:
- Reset button
- External RJ45 serial console port
Flashing instructions:
This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.
To flash via XG appliance:
- Register on Sophos' website for a no-cost Home Use XG firewall license
- Download and install the XG software on a compatible PC or virtual
machine, complete initial appliance setup, and enable SSH console access
- Connect the target AP device to the XG appliance's LAN interface
- Approve the AP from the XG Web UI and wait until it shows as Active
(this can take 3-5 minutes)
- Connect to the XG appliance over SSH and access the Advanced Console
(Menu option 5, then menu option 3)
- Run `sudo awetool` and select the menu option to connect to an AP via
SSH. When prompted to enable SSH on the target AP, select Yes.
- Wait 2-3 minutes, then select the AP from the awetool menu again. This
will connect you to a root shell on the target AP.
- Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
- Run `mtd -r write /tmp/openwrt.bin astaro_image`
- When complete, the access point will reboot to OpenWRT.
To flash via U-Boot serial console:
- Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
netmask 255.255.255.0
- Copy the firmware .bin to the TFTP server and rename to 'uImage_AP15C'
- Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
- Connect the AP ethernet to your PC's ethernet port
- Connect a terminal to the UART at 115200 8/N/1 as usual
- Power on the AP and press a key to cancel autoboot when prompted
- Run the following commands at the U-Boot console:
- `tftpboot`
- `cp.b $fileaddr 0x9f070000 $filesize`
- `boot`
- The access point will boot to OpenWRT.
Signed-off-by: David Lutz <kpanic@hirnduenger.de>
The last "syscfg" partition of the OEM firmware turns out to be a
UBIFS used to store user data, just as the "rootfs_data" of OpenWrt,
so it should be reasonable to absorb it into the "ubi" partition.
Factory installations via either OEM firmware or tftp, or by forcibly
flashing factory image to mtd5 (firmware) partition with mtd tool are
confirmed working, but the UBI remaining inside "syscfg" partition
could break upgrade. Fortunately, installing kmod-mtd-rw and erasing
"syscfg" partition before upgrade is confirmed working, in which case,
"ubi" will automatically expand to the blank space once occupied by
the former mtd8 (syscfg), with the total block number increased, but
the UBIFS for rootfs_data will not automatically claim the newly
available space (since it is created when mtd8 still exists, and
sysupgrade does not set "autoresize" flag to rootfs_data). These space
will be claimed during the next upgrade, when rootfs_data is removed
and created again.
Fixes: 50f727b773 ("ath79: add support for Linksys EA4500 v3")
Signed-off-by: Edward Chow <equu@openmail.cc>
Link: https://github.com/openwrt/openwrt/pull/14791
Signed-off-by: Robert Marko <robimarko@gmail.com>
No need for a custom function that does the same thing.
Oversight from devm conversion.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16748
Signed-off-by: Robert Marko <robimarko@gmail.com>
Oversight from devm conversion. No need for a custom static inline
function.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16747
Signed-off-by: Robert Marko <robimarko@gmail.com>
Fix in commit 25eead21c5 ("ath79: fix 5GHz on QCA9886 variant of ZTE MF286")
was incomplete. A user of such variant popped up, and in the boot log
after installation, we discovered that QCA9886 expects different
pre-calibration data size, than the older QCA9880 variant:
ath10k_pci 0000:00:00.0: qca9888 hw2.0 target 0x01000000 chip_id 0x00000000 sub 0000:0000
ath10k_pci 0000:00:00.0: kconfig debug 0 debugfs 1 tracing 0 dfs 1 testmode 0
ath10k_pci 0000:00:00.0: firmware ver 10.4b-ct-9888-fW-13-5ae337bb1 api 5 features mfp,peer-flow-ctrl,txstatus-noack,wmi-10.x-CT,ratemask-CT,regdump-CT,txrate-CT,flush-all-CT,pingpong-CT,ch-regs-CT,nop-CT,set-special-CT,tx-rc-CT,cust-stats-CT,txrate2-CT,beacon-cb-CT,wmi-block-ack-CT,wmi-bcn-rc-CT crc32 59e741e7
ath10k_pci 0000:00:00.0: invalid calibration data length in nvmem-cell 'pre-calibration': 2116 != 12064
ath10k_pci 0000:00:00.0: Loading BDF type 0
ath10k_pci 0000:00:00.0: failed to fetch board data for bus=pci,vendor=168c,device=0056,subsystem-vendor=0000,subsystem-device=0000 from ath10k/QCA9888/hw2.0/board-2.bin
ath10k_pci 0000:00:00.0: failed to fetch board-2.bin or board.bin from ath10k/QCA9888/hw2.0
ath10k_pci 0000:00:00.0: failed to fetch board file: -12
ath10k_pci 0000:00:00.0: could not probe fw (-12)
Explicitly define a pre-calibration nvmem-cell for this variant, and use
it instead of the calibration one, which is shorter.
Fixes: 25eead21c5 ("ath79: fix 5GHz on QCA9886 variant of ZTE MF286")
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16809
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
ALFA Network WiFi CampPro Nano Duo is a dual-radio Wi-Fi signal extender
(router) in USB dongle form-factor (Type-A plug is used only for power),
based on combination of two radio chipsets: Qualcomm QCA9531 (main SOC)
and MediaTek MT7610U (connected over USB 2.0 interface).
Specifications:
- SOC: QCA9531 v2 (650 MHz)
- DRAM: DDR2 128 MiB (Nanya NT5TU64M16HG-AC)
- Flash: 16 MiB SPI NOR (Macronix MX25L12835F)
- Ethernet: 1x 10/100 Mbps Ethernet (QCA9531)
- Wi-Fi: 2x2:2 2.4 GHz Wi-Fi 4 (QCA9531)
1x1:1 2.4/5 GHz Wi-Fi 5 (MT7610U)
- Antenna: 3x RP-SMA (female) antenna connectors
- LED: 1x orange (RJ45, power indicator)
2x green (status + RJ45 activity/link)
1x blue (Wi-Fi 2.4 GHz status)
- Button: 1x button (reset)
- UART: 1x 4-pin, 2.00 mm pitch header on PCB
- Other: external h/w watchdog (EM6324QYSP5B, enabled by default)
GPIO-controlled USB power for MT7610U
MAC addresses:
- LAN: 00:c0:ca:xx:xx:6d (art 0x2, -1)
- 2.4 GHz (QCA9531): 00:c0:ca:xx:xx:6e (art 0x2, device's label)
- 2.4/5 GHz (MT7610U): 00:c0:ca:xx:xx:6f (from eeprom)
Flash instructions:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with RJ45 port, press the reset button, power up device,
wait for first blink of status LED (indicates network setup), then
keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Easier to just use devm_platform_ioremap_resource.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16701
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
COMFAST CF-E355AC v2 is a ceiling mount AP with PoE support,
based on Qualcomm/Atheros QCA9531 + QCA9886.
Short specification:
- 1x 10/100 Mbps Ethernet, with PoE support (wan/eth1)
- 1x 10/100/1000 Mbps Ethernet, with PoE support (lan/eth0)
- 128MB of RAM (DDR2)
- 16 MB of FLASH
- 2T2R 2.4 GHz, 802.11b/g/n (wlan2g)
- 2T2R 5 GHz, 802.11ac/n/a, WAVE 2 (wlan5g)
- built-in 4x 3 dBi antennas
- output power (max): 500 mW (27 dBm)
- 1x RGB LED, 1x button
- separate watchdog chip via GPIO (bottom of PCB?)
- UART header on PCB with proper labelling
Markings on PCB:
* R121QH_VER2.1 (silkscreen, bottom)
* CF-WA800 (sticker, top)
Initial flashing instructions:
Original firmware is based on OpenWrt.
a) Use sysupgrade image directly in vendor GUI.
b) Or via tftp:
ipaddr=192.168.1.1
serverip=192.168.1.10
bootfile="firmware.bin"
c) Or possibly via u-boot's `httpd` command.
MAC-address mapping follows original firmware:
* eth1 (wan) is the lowest mac address (art @ 0x0)
* eth0 (lan) uses eth1 + 1 (art @ 0x1002)
* wlan2g (phy1) uses eth1 + 2 (art @ 0x06)
* wlan5g (phy0) uses eth1 + 10 (not present in art)
* unused MAC (eth1 + 3) (art @ 0x5006)
Art dump (`hexdump /dev/mtd1 |grep ZZZZ`):
0000000 ZZZZ XXXX XXX0 ZZZZ XXXX XXX2 ffff ffff
0001000 0202 ZZZZ XXXX XXX1 0000 0000 0000 0000
0005000 202f bd21 0101 ZZZZ XXXX XXX3 0000 2000
Root access to original firmware (only via UART) can be achieved by
making a backup of configuration from web interface. Backup contains
whole `/etc` directory...
Signed-off-by: Priit Laes <plaes@plaes.org>
Link: https://github.com/openwrt/openwrt/pull/16556
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
NEC Aterm WG1800HP2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9558.
Specification:
- SoC : Qualcomm Atheros QCA9558
- RAM : DDR2 128 MiB (2x Nanya NT5TU32M16DG-AC)
- Flash : SPI-NOR 16 MiB (Macronix MX25L12845EMI-10G)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 3T3R (Qualcomm Atheros QCA9558 (SoC))
- 5 GHz : 3T3R (Qualcomm Atheros QCA9880)
- Ethernet : 5x 10/100/1000 Mbps
- switch : Atheros AR8327
- LEDs/Keys (GPIO) : 12x/5x
- UART : through-hole on PCB
- assignment : 3.3V, GND, NC, TX, RX from tri-angle marking
- settings : 9600n8
- USB : 1x USB 2.0 Type-A
- hub (internal) : NEC uPD720114
- Power : 12 VDC, 1.5 A (Max. 17 W)
- Stock OS : NetBSD based
Flash instruction using initramfs-factory.bin image (StockFW WebUI):
1. Boot WG1800HP2 with router mode normally
2. Access to the WebUI ("http://aterm.me/" or "http://192.168.0.1/") on
the device and open firmware update page ("ファームウェア更新")
3. Select the OpenWrt initramfs-factory.bin image and click update
("更新") button
4. After updating, the device will be rebooted and booted with OpenWrt
initramfs image
5. On the initramfs image, upload (or download) uboot.bin and
sysupgrade.bin image to the device
6. Replace the bootloader with a uboot.bin image
mtd write <uboot.bin image> bootloader
7. Perform sysupgrade with a sysupgrade.bin image
sysupgrade <sysupgrade image>
8. Wait ~120 seconds to complete flashing
Flash instruction using initramfs-factory.bin image (bootloader CLI):
1. Connect and open serial console
2. Power on WG1800HP2 and interrupt bootloader by ESC key
3. Login to the bootloader CLI with a password "chiron"
4. Start TFTP server by "tftpd" command
5. Upload initramfs-factory.bin via tftp from your computer
example (Windows): tftp -i 192.168.0.1 PUT initramfs-factory.bin
6. Boot initramfs image by "boot" command
7. On the initramfs image, back up the stock bootloader and firmware if
needed
8. Upload (or download) uboot.bin and sysupgrade.bin image to the device
9. Replace the bootloader with a uboot.bin image
10. Perform sysupgrade with a sysupgrade.bin image
11. Wait ~120 seconds to complete flashing
Notes:
- All LEDs are connected to the TI TCA6416A (marking: PH416A) I2C
Expander chip.
- The stock bootloader requires an unknown filesystem on firmware area
in the flash. Booting of OpenWrt from that filesystem cannot be
handled, so the bootloader needs to be replaced to mainline U-Boot
before OpenWrt installation.
MAC addresses:
LAN : A4:12:42:xx:xx:44 (config, 0x6 (hex))
WAN : A4:12:42:xx:xx:45 (config, 0xc (hex))
2.4 GHz: A4:12:42:xx:xx:46 (config, 0x0 (hex))
5 GHz : A4:12:42:xx:xx:47 (config, 0x12 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
NEC Aterm WG1800HP is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9558.
Specification:
- SoC : Qualcomm Atheros QCA9558
- RAM : DDR2 128 MiB (2x Nanya NT5TU32M16DG-AC)
- Flash : SPI-NOR 16 MiB (Macronix MX25L12845EMI-10G)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 3T3R (Qualcomm Atheros QCA9558 (SoC))
- 5 GHz : 3T3R (Qualcomm Atheros QCA9880)
- Ethernet : 5x 10/100/1000 Mbps
- switch : Atheros AR8327
- LEDs/Keys (GPIO) : 12x/5x
- UART : through-hole on PCB
- assignment : 3.3V, GND, NC, TX, RX from tri-angle marking
- settings : 9600n8
- USB : 1x USB 2.0 Type-A
- hub (internal) : NEC uPD720114
- Power : 12 VDC, 1.5 A (Max. 17 W)
- Stock OS : NetBSD based
Flash instruction using initramfs-factory.bin image (StockFW WebUI):
1. Boot WG1800HP with router mode normally
2. Access to the WebUI ("http://aterm.me/" or "http://192.168.0.1/") on
the device and open firmware update page ("ファームウェア更新")
3. Downgrade the stock firmware to v1.0.2
4. After downgrading, select the OpenWrt initramfs-factory.bin image and
click update ("更新") button
5. After updating, the device will be rebooted and booted with OpenWrt
initramfs image
6. On the initramfs image, upload (or download) uboot.bin and
sysupgrade.bin image to the device
7. Replace the bootloader with a uboot.bin image
mtd write <uboot.bin image> bootloader
8. Perform sysupgrade with a sysupgrade.bin image
sysupgrade <sysupgrade image>
9. Wait ~120 seconds to complete flashing
Flash instruction using initramfs-factory.bin image (bootloader CLI):
1. Connect and open serial console
2. Power on WG1800HP and interrupt bootloader by ESC key
3. Login to the bootloader CLI with a password "chiron"
4. Start TFTP server by "tftpd" command
5. Upload initramfs-factory.bin via tftp from your computer
example (Windows): tftp -i 192.168.0.1 PUT initramfs-factory.bin
6. Boot initramfs image by "boot" command
7. On the initramfs image, back up the stock bootloader and firmware if
needed
8. Upload (or download) uboot.bin and sysupgrade.bin image to the device
9. Replace the bootloader with a uboot.bin image
10. Perform sysupgrade with a sysupgrade.bin image
11. Wait ~120 seconds to complete flashing
Notes:
- All LEDs are connected to the TI TCA6416A (marking: PH416A) I2C
Expander chip.
- The stock bootloader requires an unknown filesystem on firmware area
in the flash. Booting of OpenWrt from that filesystem cannot be
handled, so the bootloader needs to be replaced to mainline U-Boot
before OpenWrt installation.
- The data length of blocks in firmware image will be checked
(4M < threshold < 6M) on the stock WebUI on some versions (v1.0.28,
v1.0.30(latest), ...), so needs to be downgraded before OpenWrt
installation with initramfs-factory image.
MAC addresses:
LAN : 10:66:82:xx:xx:04 (config, 0x6 (hex))
WAN : 10:66:82:xx:xx:05 (config, 0xc (hex))
2.4 GHz: 10:66:82:xx:xx:06 (config, 0x0 (hex))
5 G : 10:66:82:xx:xx:07 (config, 0x12 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
NEC Aterm WG1400HP is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
QCA9558.
Specification:
- SoC : Qualcomm Atheros QCA9558
- RAM : DDR2 128 MiB (2x Nanya NT5TU32M16DG-AC)
- Flash : SPI-NOR 16 MiB (Macronix MX25L12845EMI-10G)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 3T3R (Qualcomm Atheros QCA9558 (SoC))
- 5 GHz : 2T2R (Qualcomm Atheros QCA9882)
- Ethernet : 5x 10/100/1000 Mbps
- switch : Atheros AR8327
- LEDs/Keys (GPIO) : 12x/5x
- UART : through-hole on PCB
- assignment : 3.3V, GND, NC, TX, RX from tri-angle marking
- settings : 9600n8
- USB : 1x USB 2.0 Type-A
- hub (internal) : NEC uPD720114
- Power : 12 VDC, 1.5 A (Max. 17 W)
- Stock OS : NetBSD based
Flash instruction using initramfs-factory.bin image (StockFW WebUI):
1. Boot WG1400HP with router mode normally
2. Access to the WebUI ("http://aterm.me/" or "http://192.168.0.1/") on
the device and open firmware update page ("ファームウェア更新")
3. Select the OpenWrt initramfs-factory.bin image and click update
("更新") button
4. After updating, the device will be rebooted and booted with OpenWrt
initramfs image
5. On the initramfs image, upload (or download) uboot.bin and
sysupgrade.bin image to the device
6. Replace the bootloader with a uboot.bin image
mtd write <uboot.bin image> bootloader
7. Perform sysupgrade with a sysupgrade.bin image
sysupgrade <sysupgrade image>
8. Wait ~120 seconds to complete flashing
Flash instruction using initramfs-factory.bin image (bootloader CLI):
1. Connect and open serial console
2. Power on WG1400HP and interrupt bootloader by ESC key
3. Login to the bootloader CLI with a password "chiron"
4. Start TFTP server by "tftpd" command
5. Upload initramfs-factory.bin via tftp from your computer
example (Windows): tftp -i 192.168.0.1 PUT initramfs-factory.bin
6. Boot initramfs image by "boot" command
7. On the initramfs image, back up the stock bootloader and firmware if
needed
8. Upload (or download) uboot.bin and sysupgrade.bin image to the device
9. Replace the bootloader with a uboot.bin image
10. Perform sysupgrade with a sysupgrade.bin image
11. Wait ~120 seconds to complete flashing
Notes:
- All LEDs are connected to the TI TCA6416A (marking: PH416A) I2C
Expander chip.
- The stock bootloader requires an unknown filesystem on firmware area
in the flash. Booting of OpenWrt from that filesystem cannot be
handled, so the bootloader needs to be replaced to mainline U-Boot
before OpenWrt installation.
MAC addresses:
LAN : 10:66:82:xx:xx:20 (config, 0x6 (hex))
WAN : 10:66:82:xx:xx:21 (config, 0xc (hex))
2.4 GHz: 10:66:82:xx:xx:22 (config, 0x0 (hex))
5 GHz : 10:66:82:xx:xx:23 (config, 0x12 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Commonize function names of SGMII calibration functions of QCA955x added
for Meraki MR18, to use them for NEC Aterm series based on QCA9558 as
well.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add missing reset bits of USB phys on QCA955x SoCs to qca955x.dtsi to
handle them.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16297
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
It seems this was only used by one device in ar71xx. Might as well
reapply it.
Make use of the separate TX gain table for WZR-HP-G450H:
0f978bfaf2
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15949
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The swconfig-based b53 driver for the BCM53128 switch stopped working
after commits b2cfed48f6 (Revert "swconfig: fix Broadcom b53 support")
and e4e410733f (kernel: export switch_generic_set_link() symbol). This
rendered the 8 LAN ports of the EdgeSwitch 8XP non-functional, so the
image compilation for the device was disabled (5a1d7d8c1b).
This commit adds the kmod-dsa-b53-mdio and kmod-dsa-b53 packages
with the upstream B53 DSA driver, replacing the swconfig-based
kmod and kmod-switch-bcm53xx-mdio downstream ones that are not used by
any other device.
The 8 LAN ports of the EdgeSwitch 8XP are usable again. The 02_network
init script has been updated with the new DSA interfaces lan1 .. lan8.
Image building has been reenabled for the device, adding the usual DSA
incompatibility notice.
Tested on a Ubiquiti EdgeSwitch 8XP.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Link: https://github.com/openwrt/openwrt/pull/11680
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
mutex_destroy is not called in any error paths or in _remove. Just use
devm to do so.
Removed a pointless platform_set_devdata call. Not needed with all of
the devm conversions.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16630
Signed-off-by: Robert Marko <robimarko@gmail.com>
Also use devm for gpiochip_add_data.
Allows completely removing the _remove function.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16622
Signed-off-by: Robert Marko <robimarko@gmail.com>
Even though optional is used, there's are still pointless NULL
assignments.
Use dev_err_probe to avoid manually handling EPROBE_DEFER.
Use devm_platform_iomap_resource. No struct resource needed.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Tested-by: Shiji Yang <yangshiji66@qq.com> on NETGEAR R6100.
Link: https://github.com/openwrt/openwrt/pull/16519
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Avoids needing to call mutex_destroy in error paths, which is missing
anyway.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16620
Signed-off-by: Robert Marko <robimarko@gmail.com>
There's no specific fwnode handling here. Simpler to just use pdev.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16506
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Use devm_gpiochip_add_data to get rid of the remove function. No need
for it.
Also use dev_err_probe to simplify the error path and avoid having to
handle -EPROBE_DEFER manually.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16506
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>