This package contains nvram files for Murata's Wi-Fi/Bluetooth modules.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/16716
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This package contains firmwares provided by Murata.
See https://community.murata.com/.
Murata firmwares are used by wifi chip on stm32 boards.
Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/16716
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Change the package name from intel-igpu-firmware-* to i915-firmware-*,
the prefix "intel-igpu" is misleading, i915 firmware is not only for
iGPU but also for dGPU now.
Remove the redundant "intel" as i915 is already well known.
More accurate file classification to handle following files correctly:
adlp_dmc.bin
mtl_huc.bin
mtl_huc_gsc.bin
mtl_gsc_1.bin
The pattern in regex is "([[:alnum:]]+)_([[:alnum:]]+)(_[\w-.]+)?\.bin",
where $1 is the platform, $2 is the firmware type (dmc, guc, huc, etc.),
and the optional $3 which is revision or other suffix.
Glob first to narrow down the target file set, and then split with "_"
to extract the firmware type (remove the ".bin" in case there is no $3)
Add package "i915-firmware" as a meta package to install all the i915
firmwares, it is a balance between simplicity and optimization.
* Installing all the available firmwares as a whole, can support all the
platforms, not only the current one but also the future ones. The
price to pay is the increased size.
* If we want to minimize the storage, we can customize to install the
necessary ones only, even for the target platform only (e.g. ADL) and
skip the others. The price to pay is the time to tune.
What I am going to do is:
* Let drm-i915 driver depend on i915-firmware-dmc, which is small and
can cover most of the old platforms
* Let the user select i915-firmware to install all the i915 firmwares as
a whole to cover the latest or future platforms
Signed-off-by: Joe Zheng <joe.zheng@intel.com>
Link: https://github.com/openwrt/openwrt/pull/16276
Signed-off-by: Robert Marko <robimarko@gmail.com>
Both packages `ombnia-mcu-firmware` and `omnia-mcutool` would depend on
a specific device. The buildbots however build all devices and therefore
the package isn't build at all, due to unmet dependencies.
While this didn't cause issues with OPKG, APK fails actively due to the
missing packages. Drop the specific dependency, however wants to install
unrelated firmware on any device can do that anyway.
Signed-off-by: Paul Spooren <mail@aparcar.org>
The version was a mix of strings, hex numbers and semantic numbers.
Switch the PKG_VERSION to something digestible by APK and introduce
PKG_SOURCE_VERSION to handle the actual filename.
While at it, drop the redundant PKG_B_NAME which was the same as
PKG_NAME anyway.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This commit packages the newly merged firmware (v39.0) for Realtek RTL8192DU
802.11a/b/g/n USB wireless cards.
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
Link: https://github.com/openwrt/openwrt/pull/16721
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
After a long time QCA has pushed an updated release of 2.9.0.1 firmware
for IPQ8074 and QCN9074, so lets update to 2.9.0.1-02146.
Sadly, still nothing new for IPQ6018.
QCA has also moved the repository where they will be posting firmware to
their CodeLinaro instance, so we move to using that and it allows us to
remove the manual download of QCN9074 board-2.bin.
Link: https://github.com/openwrt/openwrt/pull/16720
Signed-off-by: Robert Marko <robimarko@gmail.com>
b66b9a1 wireless-regdb: update regulatory database based on preceding changes
5097b4a wireless-regdb: Update regulatory info for Tanzania (TZ) for 2024
29633a6 wireless-regdb: Update regulatory info for Pakistan (PK) for 2024
b44edb2 wireless-regdb: Update regulatory info for Serbia (RS) for 2024
dbfae47 Revert "wireless-regdb: Update regulatory info for Serbia (SR) for 2024"
8e3d27c wireless-regdb: Correct regulatory rules of 6GHz frequency for Türkiye (TR)
8760bc3 wireless-regdb: Update regulatory info for Honduras (HN) for 2023
3ba2c53 wireless-regdb: Update regulatory info for Israel (IL) for 2021
83c175c wireless-regdb: Update regulatory info for Kuwait (KW) for 2022
388c80c wireless-regdb: Update regulatory info for Serbia (SR) for 2024
bf55ed4 wireless-regdb: Add .b4-config
3afe172 wireless-regdb: Update .gitignore
3b34761 wireless-regdb: Correct regulatory rules for China (CN)
003c282 wireless-regdb: Update regulatory info for Philippines (PH) on 6GHz
21fcb86 wireless-regdb: Update regulatory info for Guatemala (GT) for 2020
158f105 wireless-regdb: Update regulatory info for Bahrain (BH) for 2024
218d146 wireless-regdb: Add regulatory info for Namibia (NA) for 2023
aad0c26 wireless-regdb: Update regulatory info for Togo (TG) for 2022
983f551 wireless-regdb: Update regulatory info for El Salvador (SV) on 6GHz
58575b4 wireless-regdb: Update regulatory info for Peru (PE) on 6GHz
bad3985 wireless-regdb: Update regulatory info for New Zealand (NZ) for 2022
c7d1083 wireless-regdb: Update regulatory info for Qatar (QA) on 6GHz
Signed-off-by: Itay Shoshani <itai.sho@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16678
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
dcbab62 ipq40xx: add BDFs for SKSpruce WIA3300-20
A new board file package "ipq-wifi-skspruce_wia3300-20" will be
added for the incoming device SKSpruce WIA3300-20.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
Link: https://github.com/openwrt/openwrt/pull/16476
Signed-off-by: Robert Marko <robimarko@gmail.com>
Use most recent version of the Intel AX101 and AX210 firmware provided
by linux-firmware and supported the driver used in OpenWrt.
Link: https://github.com/openwrt/openwrt/pull/16621
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Kick to version 92 - that already support station
MLO correctly.
Signed-off-by: Janusz Dziedzic <janusz.dziedzic@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/16558
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Specifications:
* SoC: Qualcomm IPQ8072A (64-bit Quad-core Arm Cortex-A53 @ 2200MHz)
* Memory: 2x ESMT M15T4G16256A-DEBG2G (1 GiB DDR3-1866 13-13-13)
* Serial Port: 3v3 TTL 115200n8
* Wi-Fi: QCN5054 (4x4 5 GHz 802.11ax)
* Wi-Fi: QCN5024 (4x4 2.4 GHz 802.11b/g/n/ax)
* Ethernet: QCA8081 (10/100/1000/2.5GBASE-T)
* Flash: Winbond W29N01HZSINF (128 MiB)
* LEDs: 1x Blue Status (GPIO 42 Active High)
* Buttons: 1x Reset (GPIO 50 Active Low)
Installation Instructions (Serial+TFTP):
1. Solder 4 pin header to JP1 and bridge pads of R58 and R62.
2. Connect 3V3 TTL port to TX, RX, and GND, which are positions 1, 2,
and 3 respectively. Be sure to crossover TX and RX.
3. Copy RAM firmware image
openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
to TFTP server root, available at 192.168.10.1.
4. Connect PoE ethernet cable to the RJ45 port and hold Ctrl+B in the
serial console (115200 baud) until autoboot is halted.
5. Run the following commands in the U-boot prompt:
# tftpboot 0x44000000 openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-initramfs-uImage.itb
# bootm
You may need to type Ctrl+C and Enter before running these commands
to clear invisible characters from the buffer.
6. Run the following command in a terminal to copy the sysupgrade image
to be installed (check IP address):
$ scp openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/
7. Activate the OpenWrt serial console and run the following commands:
# cd /tmp
# sysupgrade -n openwrt-qualcommax-ipq807x-tplink_eap660hd-v1-squashfs-sysupgrade.bin
8. The AP will reboot and OpenWrt will be successfully installed.
Signed-off-by: George Witt <george.witt@nltsproject.org>
Link: https://github.com/openwrt/openwrt/pull/15832
Signed-off-by: Robert Marko <robimarko@gmail.com>
This commit adds the currently missing Mellanox
Spectrum-2, Spectrum-3, and Spectrum-4 firmware files.
Signed-off-by: Til Kaiser <mail@tk154.de>
Link: https://github.com/openwrt/openwrt/pull/15362
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
On latest Intel x86 CPUs, DMC firmware is required for the iGPU to reach
its lowest power states. If the driver cannot load it, it will print a
warning and unnecessarily make the iGPU draw a bit more power when idle.
GUC firmware (various "offload" mechanisms that deal with scheduling GPU
workloads) and HUC firmware (required for accelerated media codec
operations for HEVC/H.265) are probably more niche, but could also
provde useful for some - for example, when building an
Intel/OpenWrt-based security camera.
Signed-off-by: Johannes Truschnigg <johannes@truschnigg.info>
Link: https://github.com/openwrt/openwrt/pull/16069
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Bump `omnia-mcu-firmware` to version 4.1.
This version fixes the following issue on boards with GD32 MCU:
* the user has old GD32 MCU bootloader and application (version 2.0)
* the user upgraded MCU application firmware to newer version (from
2.99 to 4.0)
* the user wants to upgrade application again, but it is impossible,
because when MCU application firmware jumps into the old MCU
bootloader firmware (2.0), the old bootloader firmware gets stuck in
exception
* the user has to restart the board and upgrade the bootloader firmware
first, which is not ideal, since if bootloader firmware upgrade is
interrupted, the board gets bricked
Therefore the `omnia-mcutool` utility version 0.3-rc3 will refuse to
upgrade MCU application firmware to versions 2.99 to 4.0 if the MCU
bootloader firmware is at version 2.0.
For users to be able to upgrade MCU application firmware on GD32
boards, they will need this new 4.1 version.
Users that already upgraded the MCU application firmware to a version
version between 2.99 and 4.0 (using a previous version of the
`omnia-mcutool` utility) have no other choice but to upgrade MCU
bootloader firmware as well.
Signed-off-by: Marek Behún <kabel@kernel.org>
Link: https://github.com/openwrt/openwrt/pull/16159
Signed-off-by: Robert Marko <robimarko@gmail.com>
Cambium Networks XE3-4 is a tri-radio Wi-Fi 6/6E 4×4/2×2 AP.
Hardware:
Model: Cambium Networks XE3-4
CPU: IPQ6010/AP-CP01-C3, SoC Version: 1.0 @ 800 MHz
Memory: 1 GiB
Flash: 512 MiB Macronix MX30UF2G18AC + W25Q128FW
Ethernet: 1x 1 GbE (QCA8072)
1x 2.5 GbE (QCA8081)
Buttons: 1x Reset
Serial: TX, RX, GND
Baudrate: 115200
Radios: Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 2GHz
Qualcomm Atheros IPQ6018 802.11ax - 2x2 - 5GHz
Qualcomm Atheros QCN9074 802.11ax - 4x4 - 5GHz or 6GHz
BLE 4.1
Power: 32.0W 802.3bt5 PoE++
25.5W 802.3at with USB, BT disabled
Size: 215mm x 215mm
Ports: 1x USB 2.0
Antenna: 6 GHz: 6.29 dBi, Omni 30 dBm
5 GHz: 6.12 dBi, Omni 31 dBm
2.4 GHz: 4.85 dBi, Omni 29 dBm
LEDs: Multi-color status LEDs
Mounting: Wall, ceiling or T-bar
Installation: Serial connection
1. Open the AP to get access to the board. Connect RX, TX and GND.
2. Power on the AP, and short the CS pin of the SPI flash with
one of the APs GND pins.
3. Transfer the initramfs image with TFTP
(Default server IP is 192.168.0.120)
# tftpboot factory.ubi
4. Flash the rootfs partition
# flash rootfs
5. Reboot the AP
# reset
Signed-off-by: Kristian Skramstad <kristian+github@83.no>
Link: https://github.com/openwrt/openwrt/pull/15633
Signed-off-by: Robert Marko <robimarko@gmail.com>
Add a new package, omnia-mcu-firmware, containing firmware binaries for
the microcontroller on the Turris Omnia router.
Signed-off-by: Marek Mojík <marek.mojik@nic.cz>
Signed-off-by: Marek Behún <kabel@kernel.org>
Link: https://github.com/openwrt/openwrt/pull/13799
Signed-off-by: Robert Marko <robimarko@gmail.com>
Build the amd64-microcode package on all architectures even if it only
makes sense to use it on x86. If the package build is done by a builder
not building for x86 it will not include the package otherwise.
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Package the firmware files in the target specific build step and not in
the architecture common step. The architecture common step is not
necessary build for the ipq40xx target. If it is build for a different
target these packages are not packaged at all. This moves the build to
the ipq40xx target specific build step. This change is needed to make
the firmware files show up in the buildbot images.
Fixes: 02db8a19cb ("firmware: add Intel/Lantiq VRX518 ACA firmware package")
Fixes: 07b0e6f3d9 ("firmware: add Intel/Lantiq VRX518 PPE firmware package")
Fixes: 13eb1f564a ("firmware: add Intel/Lantiq VRX518 DSL firmware package")
Link: https://github.com/openwrt/openwrt/pull/16031
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is required by the DSL CPE API driver.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[update for new license]
Signed-off-by: Andre Heider <a.heider@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15550
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This firmware is used by the vrx518 tc driver.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[update for new license]
Signed-off-by: Andre Heider <a.heider@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15550
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This firmware is used by the vrx518 ep driver.
Signed-off-by: Martin Schiller <ms.3headeddevs@gmail.com>
[update for new license]
Signed-off-by: Andre Heider <a.heider@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15550
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Changes:
2a768c4 wireless-regdb: Update regulatory rules for Mongolia (MN) on 6GHz
04875d9 wireless-regdb: Update regulatory rules for Saudi Arabia (SA) on 6GHz
b7bced8 wireless-regdb: Update regulatory rules for South Africa (ZA) on 6GHz
7bc8615 wireless-regdb: Update regulatory info for Thailand (TH) on 6GHz
f901fa9 wireless-regdb: Update regulatory info for Malaysia (MY) for 2022
d72d288 wireless-regdb: Update regulatory info for Morocco (MA) on 6GHz
414face wireless-regdb: Update regulatory info for Chile (CL) on 6GHz
1156a08 wireless-regdb: Update regulatory info for Mexico (MX) on 6GHz
cc6cf7c wireless-regdb: Update regulatory info for Iceland (IS) on 6GHz
ce03cc0 wireless-regdb: Update regulatory info for Mauritius(MU) on 6GHz
7e37778 wireless-regdb: Update regulatory info for Argentina (AR) on 6GHz
56f3a43 wireless-regdb: Update regulatory info for United Arab Emirates (AE) on 6GHz
3cb8b91 wireless-regdb: Update regulatory info for Colombia (CO) on 6GHz
3682ce5 wireless-regdb: Update regulatory info for Costa Rica (CR) for 2021
dd4ffe7 wireless-regdb: Update regulatory info for Dominican Republic (DO) on 6GHz
f8ef7da wireless-regdb: Update regulatory info for Liechtenstein (LI) on 6GHz
a9ecabe wireless-regdb: Update regulatory info for Jordan (JO) for 2022
5a9fdad wireless-regdb: Update regulatory info for Kenya (KE) for 2022
19326c3 wireless-regdb: Update regulatory info for Macao (MO) for 2024
4838054 wireless-regdb: update regulatory database based on preceding changes
Link: https://github.com/openwrt/openwrt/pull/15921
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
BDFs come from latest firmware, version 1.1.19.209880 (2022-06-20):
- /lib/firmware/IPQ4019/v1/FCC/boardData_1_0_IPQ4019_DK04_2G.bin
- /lib/firmware/IPQ4019/v1/FCC/boardData_1_0_IPQ4019_DK04_5G.bin
- /lib/firmware/QCA9888/v1/FCC/boardData_2_0_QCA9888_5G_Y9690_SBS_HB.bin
Signed-off-by: Rodrigo Balerdi <lanchon@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/15844
Signed-off-by: Robert Marko <robimarko@gmail.com>
Debian changelog:
intel-microcode (3.20240531.1) unstable; urgency=medium
* New upstream microcode datafile 20240531
* Fix unspecified functional issues on Pentium Silver N/J5xxx,
Celeron N/J4xxx
* Updated Microcodes:
sig 0x000706a1, pf_mask 0x01, 2024-04-19, rev 0x0042, size 76800
* source: update symlinks to reflect id of the latest release, 20240531
-- Henrique de Moraes Holschuh <hmh@debian.org> Sat, 01 Jun 2024 11:49:47 -0300
intel-microcode (3.20240514.1) unstable; urgency=medium
* New upstream microcode datafile 20240514
* Mitigations for INTEL-SA-01051 (CVE-2023-45733)
Hardware logic contains race conditions in some Intel Processors may
allow an authenticated user to potentially enable partial information
disclosure via local access.
* Mitigations for INTEL-SA-01052 (CVE-2023-46103)
Sequence of processor instructions leads to unexpected behavior in
Intel Core Ultra Processors may allow an authenticated user to
potentially enable denial of service via local access.
* Mitigations for INTEL-SA-01036 (CVE-2023-45745, CVE-2023-47855)
Improper input validation in some Intel TDX module software before
version 1.5.05.46.698 may allow a privileged user to potentially enable
escalation of privilege via local access.
* Fix for unspecified functional issues on 4th gen and 5th gen Xeon
Scalable, 12th, 13th and 14th gen Intel Core processors, as well as for
Core i3 N-series processors.
* Updated microcodes:
sig 0x000806f8, pf_mask 0x87, 2024-02-05, rev 0x2b0005c0, size 581632
sig 0x000806f7, pf_mask 0x87, 2024-02-05, rev 0x2b0005c0
sig 0x000806f6, pf_mask 0x87, 2024-02-05, rev 0x2b0005c0
sig 0x000806f5, pf_mask 0x87, 2024-02-05, rev 0x2b0005c0
sig 0x000806f4, pf_mask 0x87, 2024-02-05, rev 0x2b0005c0
sig 0x000806f8, pf_mask 0x10, 2024-02-05, rev 0x2c000390, size 614400
sig 0x000806f6, pf_mask 0x10, 2024-02-05, rev 0x2c000390
sig 0x000806f5, pf_mask 0x10, 2024-02-05, rev 0x2c000390
sig 0x000806f4, pf_mask 0x10, 2024-02-05, rev 0x2c000390
sig 0x00090672, pf_mask 0x07, 2023-12-05, rev 0x0035, size 224256
sig 0x00090675, pf_mask 0x07, 2023-12-05, rev 0x0035
sig 0x000b06f2, pf_mask 0x07, 2023-12-05, rev 0x0035
sig 0x000b06f5, pf_mask 0x07, 2023-12-05, rev 0x0035
sig 0x000906a3, pf_mask 0x80, 2023-12-05, rev 0x0433, size 222208
sig 0x000906a4, pf_mask 0x80, 2023-12-05, rev 0x0433
sig 0x000906a4, pf_mask 0x40, 2023-12-07, rev 0x0007, size 119808
sig 0x000b0671, pf_mask 0x32, 2024-01-25, rev 0x0123, size 215040
sig 0x000b06e0, pf_mask 0x11, 2023-12-07, rev 0x0017, size 138240
sig 0x000c06f2, pf_mask 0x87, 2024-02-05, rev 0x21000230, size 552960
sig 0x000c06f1, pf_mask 0x87, 2024-02-05, rev 0x21000230
* source: update symlinks to reflect id of the latest release, 20240514
-- Henrique de Moraes Holschuh <hmh@debian.org> Thu, 16 May 2024 21:40:52 -0300
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This commit adds support for Netgear Orbi Pro SXR80 and SXS80 (collectively known as SXK80)
Specifications:
---------------
* CPU: Qualcomm IPQ8074A Quad core Cortex-A53
* RAM: 1024MB
* Storage: SPI-NAND 512 MiB (Winbond W29N04GZ)
* Ethernet: 4x 1G RJ45 ports (QCA8075) 1x 2.5G RJ45 LAN/WAN (QCA8081)
* WLAN:
- 2.4 GHz: Qualcomm QCN5024 4x4
- 2x 5 GHz: Qualcomm QCN5054 4x4 (second radio high channels only)
* LEDs:
- Power: (Green and red)
- Front: (Blue, green, red and white)
* Buttons:
- 1x Soft reset
- 1x Sync/WPS
* Power: 12V DC Jack
Installation instructions (Telnet):
-----------------------------------
*Note, this guide assumes SXR80, for SXS80 change the firmware file name as appropriate
1. Put firmware file openwrt-qualcommax-ipq807x-netgear_sxr80-initramfs-uImage.itb in root of TFTP server available at 192.168.1.10.
2. Enable telnet by going to http://[ip of device]/debug.htm and clicking on the tickbox 'Enable telnet'
3. Telnet into the device and login using the same username and password as the web interface:
4. Run the following command:
`fw_setenv bootcmd 'env default -a; saveenv; reset'`
5. Reboot the router, once the web interface is available again re-enable telnet via http://[ip of device]/debug.htm and telnet into the device.
6. Run the following command:
`fw_printenv`
It should look similar to the below:
```
baudrate=115200
bootargs=console=ttyMSM0,115200n8
bootcmd=mii write 0x0 0x0 0x800; sleep 1; nmrp; bootdni; boot_DNI_secureboot
bootdelay=2
ipaddr=192.168.1.1
netmask=255.255.255.0
serverip=192.168.1.10
soc_version_major=2
soc_version_minor=0
```
**If you see the message:**
`Warning: Bad CRC, using default environment`
**DO NOT CONTINUE, YOU WILL BRICK YOUR DEVICE**
7. Run the following command:
`fw_setenv originalboot 'mii write 0x0 0x0 0x800; sleep 1; nmrp; bootdni; boot_DNI_secureboot'`
(This should match what's in the bootcmd variable displayed in step 6)
8. Run the following commands:
```
fw_setenv wrttftp 'mii write 0x0 0x0 0x800; sleep 1; nmrp; if tftpboot openwrt-qualcommax-ipq807x-netgear_sxr80-initramfs-uImage.itb; then bootm; fi; bootdni; boot_DNI_secureboot'
fw_setenv wrtboot 'mii write 0x0 0x0 0x800; sleep 1; nmrp; nand read 0x40000000 0x1980000 0x06d00000; bootm 0x40000000'
fw_setenv bootcmd 'run wrttftp'
```
9. Ensure SXR/S device is attached via ethernet (LAN port) to the same ethernet segment as the TFTP server.
10. Reboot the device, it should reboot into OpenWrt and be available on 192.168.1.1
11. Once OpenWrt has booted, update the bootcmd using the following command:
`fw_setenv bootcmd 'run wrtboot'`
12. Flash the sysupgrade image
13. It should boot into OpenWrt
References to SXK80 GPL source:
https://www.downloads.netgear.com/files/GPL/SXK80-V3.2.0.108_gpl_src.tar.bz2.zip
Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Andrew Smith <gul.code@outlook.com>
Link: https://github.com/openwrt/openwrt/pull/14939
Signed-off-by: Robert Marko <robimarko@gmail.com>
Changes:
73529a8 Revert "wireless-regdb: Update and disable 5470-5730MHz band according to TPC requirement for Singapore (SG)"
87941e4 wireless-regdb: Update regulatory rules for Taiwan (TW) on 6GHz
33797ae wireless-regdb: update regulatory database based on preceding changes
Signed-off-by: Yuu Toriyama <PascalCoffeeLake@gmail.com>
Hardware specification:
========
SoC: Qualcomm IPQ8072A
Flash: 512MB (Fidelix FMND4G08S3J-ID)
RAM: 1GB (2x Kingston DDR3L D2516ECMDXGJD)
Ethernet: 1x 10/100/1000/2500/5000Mbps (Marvell AQR114C)
Ethernet: 4x 10/100/1000Mbps (Qualcomm QCA8075)
WiFi1: 6GHz ax 4x4 (Qualcomm QCN9024 + Skyworks SKY85784-11) - channels 33-229
WiFi2: 5GHz ax 4x4 (Qualcomm QCN5054 + Skyworks SKY85755-11) - channels 36-177
WiFi3: 2.4GHz ax 4x4 (Qualcomm QCN5024 + Skyworks SKY8340-11)
IoT: Bluetooth 5, Zigbee and Thread (NXP K32W041)
LED: 1x RGB status (NXP PCA9633)
USB: 1x USB 3.0
Button: WPS, Reset
Flash instructions:
========
1. Manually upgrade firmware using openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin image.
More details can be found here: https://www.linksys.com/support-article?articleNum=47547
After first boot check actual partition:
- fw_printenv -n boot_part
and install firmware on second partition using command in case of 2:
- mtd -r -e kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin kernel
and in case of 1:
- mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin alt_kernel
2. Installation using serial connection from OEM firmware (default login: root, password: admin):
- fw_printenv -n boot_part
In case of 2:
- flash_erase /dev/mtd21 0 0
- nandwrite -p /dev/mtd21 openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin
or in case of 1:
- flash_erase /dev/mtd23 0 0
- nandwrite -p /dev/mtd23 openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin
After first boot install firmware on second partition:
- mtd -r -e kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin kernel
or:
- mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin alt_kernel
3. Installation from initramfs image using USB drive:
Put the initramfs image on the USB drive:
- dd bs=1M if=openwrt-qualcommax-ipq807x-linksys_mx8500-initramfs-uImage.itb of=/dev/sda
Stop u-boot and run:
- usb start && usbboot $loadaddr 0 && bootm $loadaddr
Write firmware to the flash from initramfs:
- mtd -e kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin kernel
and:
- mtd -r -e alt_kernel -n write openwrt-qualcommax-ipq807x-linksys_mx8500-squashfs-factory.bin alt_kernel
4. Back to the OEM firmware:
- mtd -e kernel -n write FW_MX8500_1.0.11.208937_prod.img kernel
and:
- mtd -r -e alt_kernel -n write FW_MX8500_1.0.11.208937_prod.img alt_kernel
5. USB recovery:
Put the initramfs image on the USB:
- dd bs=1M if=openwrt-qualcommax-ipq807x-linksys_mx8500-initramfs-uImage.itb of=/dev/sda
Set u-boot env:
- fw_setenv bootusb 'usb start && usbboot $loadaddr 0 && bootm $loadaddr'
- fw_setenv bootcmd 'run bootusb; if test $auto_recovery = no; then bootipq; elif test $boot_part = 1; then run bootpart1; else run bootpart2; fi'
AQR firmware:
========
1. Firmware loading:
To properly load the firmware and initialize AQR PHY, we must use the u-boot aq_load_fw function.
To do this, you need to modify u-boot env:
With USB recovery:
- fw_setenv bootcmd 'aq_load_fw; run bootusb; if test $auto_recovery = no; then bootipq; elif test $boot_part = 1; then run bootpart1; else run bootpart2; fi'
and without:
- fw_setenv bootcmd 'aq_load_fw; if test $auto_recovery = no; then bootipq; elif test $boot_part = 1; then run bootpart1; else run bootpart2; fi'
2. Firmware updating:
Newer firmware (AQR-G4_v5.6.5-AQR_WNC_SAQA-L2_GT_ID45287_VER24005.cld) is available in the latest OEM firmware.
To load this firmware via u-boot, we need to add the MBN header and update 0:ethphyfw partition.
For MBN header we can use script from this repository: https://github.com/testuser7/aqr_mbn_tool
- python aqr_mbn_tool.py AQR-G4_v5.6.5-AQR_WNC_SAQA-L2_GT_ID45287_VER24005.cld
To update partition we need to install kmod-mtd-rw package first:
- insmod mtd-rw.ko i_want_a_brick=1
- mtd -e /dev/mtd26 -n write aqr_fw.mbn /dev/mtd26
Signed-off-by: Paweł Owoc <frut3k7@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/14883
Signed-off-by: Robert Marko <robimarko@gmail.com>