This was overlooked when adding support for this device.
(It has recently been discovered that this was the only device in
ath79 having &uart disabled.)
Fixes: acc6263013 ("ath79: add support for GL.iNet GL-USB150")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 722f1bd549)
The uart node is enabled on all devices except one (GL-USB150 *).
Thus, let's not have a few hundred nodes to enable it, but do not
disable it in the first place.
Where the majority of devices is using it, also move the serial0
alias to the DTSI.
*) Since GL-USB150 even defines serial0 alias, the missing uart
is probably just a mistake. Anyway, disable it for now so this
patch stays cosmetic.
Apply this to 21.02 as well to remove an unnecessary backporting
pitfall.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 3a4b751110)
The factory images need to embed specific IDs to pass verification with
the OEM firmware (including TFTP recovery), so they need to be
per-device variables.
Fixes: ab1584a797 ("ath79: netgear: trim down uImage customisations")
Fixes: 459c8c9ef8 ("ath79: add support for ZyXEL NBG6616")
Reported-by: Marcin Juszkiewicz <marcin-openwrt@juszkiewicz.com.pl>
Signed-off-by: Paul Fertser <fercerpav@gmail.com>
[minor commit message adjustments, sort DEVICE_VARS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The original setup fails to trigger ART calibration data
extraction for the AR9287. Instead, it would only have extracted
calibration data for an internal WMAC chip which is not present on
this board.
Fixes: 55d2db0e8c ("ath79: add support for Meraki MR12")
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TP-Link TL-WR810N v1 is known to cause soft-brick on ath79 and
work fine for ar71xx [1]. On closer inspection, the only apparent
difference is the GPIO used for the USB regulator, which deviates
between the two targets.
This applies the value from ar71xx to ath79.
Tested successfully by a forum user.
[1] https://forum.openwrt.org/t/tp-link-tl-wr810n-v1-ath79/48267
Fixes: cdbf2de777 ("ath79: Add support for TP-Link WR810N")
Fixes: FS#3522
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* 2x Gigabit LAN (1x 802.11af PoE)
* IP68 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Both ethernet ports are set to LAN by default, matching the labelling on
the case. However, since both GMAC Interfaces eth0 and eth1 are connected
to the switch (QCA8337), the user may create an additional 'wan' interface
as desired and override the vlan id settings to map br-lan / wan to either
the PoE or non-PoE port, depending on the individual scenario of use.
So, the LAN and WAN ports would then be connected to different GMACs, e.g.
config interface 'lan'
option ifname 'eth0.1'
...
config interface 'wan'
option ifname 'eth1.2'
...
config switch_vlan
option device 'switch0'
option vlan '1'
option ports '1 0t'
config switch_vlan
option device 'switch0'
option vlan '2'
option ports '2 6t'
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add configuration example]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Have the port use GMAC1 with internal switch
which fixes the issue of the ethernet LED not functioning
The LED is triggered by the internal switch, not a GPIO.
The GPIO for the ethernet LED was added in ath79
as it was defined in the ar71xx target
but it was not functioning in ath79 for a previously unknown reason.
It is unknown why that GPIO was defined as an LED in ar71xx.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[drop unrelated changes: model property and SPI max frequency]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
for:
- ENH202 v1
- ENS202EXT v1
- EnstationAC v1
- EWS511AP
For EWS511AP, have default behavior as static ip
to match the behavior of all other APs in ath79
These boards are sold as
Client Bridge or Point to Point or Access Point
so there is probably no benefit to have WAN by default
for one of the ports, to prevent user confusion.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Port device support for Meraki MR12 from the ar71xx target to ath79.
Specifications:
- SoC: AR7242-AH1A CPU
- RAM: 64MiB (NANYA NT5DS32M16DS-5T)
- NOR Flash: 16MiB (MXIC MX25L12845EMI-10G)
- Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY)
- Ethernet: 1 x 100Mbit port (SoC MAC+PHY)
- Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n)
Installation:
1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
2. Open shell case
3. Connect a USB->TTL cable to headers furthest from the RF shield
4. Power on the router; connect to U-boot over 115200-baud connection
5. Interrupt U-boot process to boot Openwrt by running:
setenv bootcmd bootm 0xbf0a0000; saveenv;
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
bootm 0c00000;
6. Copy sysupgrade image to /tmp on MR12
7. sysupgrade /tmp/<filename-of-sysupgrade>.bin
Notes:
- kmod-owl-loader is still required to load the ART partition into the
driver.
- The manner of storing MAC addresses is updated from ar71xx; it is
at 0x66 of the 'config' partition, where it was discovered that the
OEM firmware stores it. This is set as read-only. If you are
migrating from ar71xx and used the method mentioned above to
upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
method for doing this is described below.
- Migrating directly from ar71xx has not been thoroughly tested, but
one method has been used a couple of times with good success,
migrating 18.06.2 to a full image produced as of this commit. Please
note that these instructions are only for experienced users, and/or
those still able to open their device up to flash it via the serial
headers should anything go wrong.
1) Install kmod-mtd-rw and uboot-envtools
2) Run `insmod mtd-rw.ko i_want_a_brick=1`
3) Modify /etc/fw_env.config to point to the u-boot-env partition.
The file /etc/fw_env.config should contain:
# MTD device env offset env size sector size
/dev/mtd1 0x00000 0x10000 0x10000
See https://openwrt.org/docs/techref/bootloader/uboot.config
for more details.
4) Run `fw_printenv` to verify everything is correct, as per the
link above.
5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
6) Manually modify /lib/upgrade/common.sh's get_image function:
Change ...
cat "$from" 2>/dev/null | $cmd
... into ...
(
dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address
dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
cat "$from" 2>/dev/null
) | $cmd
... which, during the upgrade process, will pad the image by
128K of zeroes-plus-MAC-address, in order for the ar71xx's
firmware partition -- which starts at 0xbf080000 -- to be
instead aligned with the ath79 firmware partition, which
starts 128K later at 0xbf0a0000.
7) Copy the sysupgrade image into /tmp, as above
8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait
Again, this may BRICK YOUR DEVICE, so make *sure* to have your
serial cable handy.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[add LED migration and extend compat message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Ran update_kernel.sh in a fresh clone without any existing toolchains.
Removed upstreamed patches:
imx6: 303-ARM-dts-imx6qdl-gw52xx-fix-duplicate-regulator-namin.patch
Build system: x86_64
Build-tested: ipq806x/R7800, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Add statistics to ethtool. The statistics can be useful to
debug network issues.
The code is backported from mainline ag71xx.c driver.
Signed-off-by: Leon Leijssen <leon.git@leijssen.info>
Hardware
--------
Atheros AR7241
16M SPI-NOR
64M DDR2
Atheros AR9283 2T2R b/g/n
2x Fast Ethernet (built-in)
Installation
------------
Transfer the Firmware update to the device using SCP.
Install using fwupdate.real -m <openwrt.bin> -d
Signed-off-by: David Bauer <mail@david-bauer.net>
A header used in ELECOM WRC-300GHBK2-I and WRC-1750GHBK2-I/C is also
used in ELECOM WRC-2533GHBK-I, so split the code to generate the header
and move it to image-commands.mk to use from ramips target.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
On a platform with many very different devices, like found on ath79,
the generic profiles seem like remnants of the past that do not
have a real use anymore.
Remove them to have one thing less to maintain.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "netgear,uimage" parser can be replaced by the generic
parser using device specific openwrt,ih-magic and
openwrt,ih-type properties.
Device tree properties for the following devices have not
been set, as they have been dropped from OpenWrt with the
removal of the ar71xx target:
FW_MAGIC_WNR2000V1 0x32303031
FW_MAGIC_WNR2000V4 0x32303034
FW_MAGIC_WNR1000V2_VC 0x31303030
FW_MAGIC_WPN824N 0x31313030
Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2
Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 and to-be-added MR1750 family are very similar.
Make the existing MR900 DTSI more general so it can be used for
the MR1750 devices as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The shared image definitions for OpenMesh devices are currently
organized based on device families. This introduces some duplicate
code, as the image creation code is mostly the same for those.
This patch thus derives two basic shared definitions that work for
all devices and only requires a few variables to be moved back to
the device definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family.
These devices are shipped with an AR803x PHY and had various problems with
the delay configuration in ar71xx. These problems are now in the past [1]
and parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the ECB1750 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR600 is a modified version of the EAP600 family. These
devices are shipped with an AR803x PHY and had various problems with the
delay configuration in ar71xx. These problems are now in the past [1] and
parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the EAP600 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These devices do not run Ubiquiti AirOS. Rename the partition to the
name used by other UniFi devices with vendor dualboot support.
Signed-off-by: David Bauer <mail@david-bauer.net>
The USB port definition is only needed when it is linked to a USB
LED. Since there is none for this device, we might as well remove
the port definition.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPU: Atheros AR9342 rev 3 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports: 1x GbE
Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common
Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
`hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
`chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)
Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
tftpboot
8. Boot the initramfs binary:
bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
sysupgrade.
The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.
Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled. It isn't currently known whether phy1 is
routed to the N connector at all.
Signed-off-by: Russell Senior <russell@personaltelco.net>
For:
- ENH202 v1
- ENS202EXT v1
These boards were committed before it was discovered
that for all Engenius boards with a "failsafe" image,
forcing the failsafe image to load next boot
can be achieved by editing the u-boot environment like:
`fw_setenv rootfs_checksum 0`
So it's not necessary to delete a partition to boot to failsafe image.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This moves some of the Engenius boards from generic to tiny:
- EAP350 v1
- ECB350 v1
- ENH202 v1
For these, factory.bin builds are already failing on master
branch because of the unique situation for these boards:
- 8 MB flash
- an extra "failsafe" image for recovery
- TFTP does not work (barely possible with 600 MTU)
- bootloader loads image from a longer flash offset
- 1 eraseblock each needed for OKLI kernel loader and fake rootfs
- using mtd-concat to make use of remaining space...
The manual alternative would be removing the failsafe partition.
However this comes with the risk of extremely difficult recovery
if a flash ever fails because TFTP on the bootloader is bugged.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[improve commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
It is good practice to define device tree files based on specific
SoCs. Thus, let's not start to create files that are used across
different architectures.
Duplicate the DTSI file for D-Link DAP-2xxx in order to have one
for qca953x and one for qca955x, respectively.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The device is a one-port, but was set up as two-port by the
default case in 02_network. Fix it.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
* IP55 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
* QCA9984, 802.11ac Wave 2 3T3R
* Gigabit LAN Port (AR8035), 802.11at PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The phy label/node name should correspond to the reg property.
While at it, use more common decimal notation for reg property itself.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch was backported to the 5.4 kernel tree as commit
c2d5c4df27e0 at least since release v5.4.28. Since then, it enables RX
an TX ready override twice.
Signed-off-by: David Bauer <mail@david-bauer.net>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The upgrade script for the openmesh sysupgrade procedure used always an 1
byte block size. This made it easier to seek the correct position in the CE
image and to make sure the right amount of data was copied. But this also
meant that the reading/writing of data required an excessive amount of
syscalls and copy operations.
A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the
write operation (170s in total) during the sysupgrade.
But it is possible to reduce this overhead slightly:
* index access to read the file size can be done in single 8 byte chunk
(while doing the seek with byte granularity) because each size entry is
example 8 bytes long
* the fwupgrade.cfg can be read as one block (while seeking to its position
using its actual byte offset) because it should be rather small and fit
into the RAM easily
* the kernel can be read in 1KB blocks (while seking to its positions using
its actual byte offset) because the the size of the kernel is always a
multiple of the NOR flash block size (64KB and 256KB)
This results in a sysupgrade write time of roughly 90s (140s in total).
This could be reduced even further when also using larger chunks for the
rootfs. But the squashfs rootfs image is at the moment always
(256KB or 64KB) * block + 4 bytes
long. It would be expected that the time for the sysupgrade write could be
reduced to roughly 30s (80s in total) when busybox's dd would support
the iflag count_bytes.
Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 1
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
sysupgrade.bin has been added to IMAGES twice, resulting in
warnings like:
Makefile:86: warning: overriding recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Makefile:86: warning: ignoring old recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The current support for MikroTik NAND-based devices relies on a
gross hack that packs the kernel into a static YAFFS stub, as the
stock bootloader only supports booting a YAFFS-encapsulated kernel.
The problem with this approach is that since the kernel partition is
blindly overwritten without any kind of wear or badblock management
(due to lack of proper support for YAFFS in OpenWRT), the NAND flash
is not worn uniformly and eventually badblocks appear, leading to
unbootable devices.
This issue has been reported here [1] and discussed in more detail
here [2].
[1] https://forum.openwrt.org/t/rb433-bad-sector-cannot-start-openwrt/71519
[2] https://github.com/openwrt/openwrt/pull/3026#issuecomment-673597461
Until a proper fix is found (or the stock bootloader supports other
filesystems), we disable building these images to prevent unknowing
users from risking their devices.
Thanks to Thibaut Varène for summarizing the details above.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: U2M-EAP350
Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.
Specification:
- AR7242 SOC
- AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 8 MB FLASH MX25L6406E
- 32 MB RAM EM6AA160TSA-5G
- UART at J2 (populated)
- 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset)
- 2 internal antennas
MAC addresses:
MAC address is labeled as "MAC"
Only 1 address on label and in flash
The OEM software reports these MACs for the ifconfig
eth0 MAC *:0c art 0x0
phy0 --- *:0d ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.10.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP350 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap350-uImage-lzma.bin
openwrt-senao-eap350-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
uboot did not have a good value for 1 GBps
so it was taken from other similar DTS file.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-EAP600
Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset)
- 4 internal antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
eth0 MAC 1 *:5e ---
phy1 MAC 2 *:5f --- (2.4 GHz)
phy0 ----- *:60 art 0x0 (5 GHz)
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap600-uImage-lzma.bin
openwrt-senao-eap600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The boards have equivalent hardware except for LEDs
and equivalent device config except for MACs
also use naming convention for mtd-concat partitions
to prepare for upcoming patch
"treewide: use more descriptive names for concatenated partitions"
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB600
Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset)
- 4 external antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
phy1 MAC 1 *:52 --- (2.4 GHz)
phy0 MAC 2 *:53 --- (5 GHz)
eth0 ----- *:54 art 0x0
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ECB600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ecb600-uImage-lzma.bin
openwrt-senao-ecb600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the ECB series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Commit 5fc28ef479 ("ath79: Add support for Plasma Cloud PA300")
added the IMAGE/sysupgrade.bin/squashfs definition, which leaks into
other devices, resulting in sysupgrade.bin images that are actually
tarballs and do not boot when directly written to flash.
We can use the normal sysupgrade.bin command variable for this device.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[fix format, spelling]
Signed-off-by: David Bauer <mail@david-bauer.net>
Newer EnGenius software that still uses the tar.gz platform
instead of the custom header requires more checks for upgrading,
but their script includes a way to skip them...
the existence of a file in the tar.gz called failsafe.bin
Their upgrade script has these lines:
\#pass check when upload with full image file
[ "${errcode}" -eq "1" ] && [ -f failsafe.bin ] && errcode="0"
This overrides the script's "errcode" variable
which can be set if any of the following actions/checks fail:
- untarring of the upload
- magic number for kernel: "2705"
- magic num for rootfs: "7371" or "6873"
- md5sums for each file in the format
filename:md5
- existence of a file matching FWINFO*
that it has boardname in the name somewhere (grep)
that the 4th field of separator "-" is at least 3 (version)
Otherwise we would need to generate md5sums in this strange format
and touch a file with specific requirements in the name.
This does not effect boards where the advanced checks do not apply.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
FCC ID: A8J-ENSTAC
Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.
Specification:
- QCA9557 SOC
- QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm)
- AR8035-A switch (RGMII GbE with PoE+ IN)
- AR8031 switch (SGMII GbE with PoE OUT)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 (unpopulated)
- internal antenna plates (19 dbi, directional)
- 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset)
MAC addresses:
MAC addresses are labeled as ETH and 5GHz
Vendor MAC addresses in flash are duplicate
eth0 ETH *:d3 art 0x0/0x6
eth1 ---- *:d4 ---
phy0 5GHz *:d5 ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP recovery:
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board
hold or press reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
Format of OEM firmware image:
The OEM software of EnStationAC is a heavily modified version
of Openwrt Altitude Adjustment 12.09. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-enstationac-uImage-lzma.bin
openwrt-ar71xx-enstationac-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8033 switch between
the SOC and the ethernet PHY chips.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
For eth0 at 1000 speed, the value returned was
ae000000 but that didn't work, so following
the logical pattern from the rest of the values,
the guessed value of a3000000 works better.
later discovered that delay can be placed on the PHY end only
with phy-mode as 'rgmii-id' and set register to 0x82...
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* Gigabit LAN Port (AR8035), 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
- 24v power supply with 3.0mm x 1.0mm barrel plug
- 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.
SoC: Qualcomm / Atheros AR9342
RAM: 64 MB DDR2
Flash: 16 MB SPI NOR
Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS: 1x via a SPI controller (not yet supported)
Buttons: 1x Reset
Serial: 1x (only RX and TX); 115200 baud, 8N1
Missing features:
- LED control is not supported
Physical to internal switch port mapping:
- physical port #1 (poe in) = switchport 2
- physical port #2 = switchport 3
- physical port #3 = switchport 5
- physical port #4 (wan/poe out) = switchport 4
Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.
Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
This patch adds support for the MikroTik RouterBOARD wAPR-2nD (wAP R)
router, a weatherproof 2.4 GHz access point with a miniPCI-e slot and
a SIM card slot.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- miniPCI-e slot
- 4x green LEDs (1x WiFi, 3x RSSI)
- 1x reset button
See https://mikrotik.com/product/RBwAPR-2nD for more details.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* external antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The MIPS code is supposed to fall back to u-boots bootargs whenever the
/chosen/bootargs property is missing. But this feature was accidentally
disabled when the boot_command_line was initialized with an empty space
just to work around problems with early_init_dt_scan_chosen.
But this feature is necessary for some boards which have a dualboot
mechanism and whose u-boot is calculating the correct partition at runtime
without writing this information back to the u-boot-env.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
FCC ID: A8J-ECB350
Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.
**Specification:**
- AR7242 SOC
- AR9283 WLAN 2.4 GHz (2x2), PCIe on-board
- AR8035-A switch RGMII, GbE with 802.3af PoE
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 32 MB RAM
- UART at J2 (populated)
- 2 external antennas
- 3 LEDs, 1 button (power, lan, wlan) (reset)
**MAC addresses:**
MACs are labeled as WLAN and WAN
vendor MAC addresses in flash are duplicate
phy0 WLAN *:b8 ---
eth0 WAN *:b9 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of ECB350 v1 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
The factory upgrade script follows the original mtd partitions.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from u-boot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board no extra adjustements are needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Add support for the ar71xx supported GL.iNet GL-USB150 to ath79.
GL.iNet GL-USB150 is an USB dongle WiFi router, based on Atheros AR9331.
Specification:
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- Realtek RTL8152B USB to Ethernet bridge (connected with AR9331 PHY4)
- 1T1R 2.4 GHz
- 2x LED, 1x button
- UART header on PCB
Flash instruction:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
factory.bin was not tested for ECB1750...
but it was tested on it's sister board ECB1200
The product ID for the header can be verified by inspecting
the header of OEM images, or in the u-boot environment.
Also:
- the LAN LED is controlled directly by the AR8035 switch
- the labelled (first increment) MAC for both is ethaddr (eth0)
- list packages in alphabetical order
- use default sysupgrade.bin recipe
Signed-off-by: Michael Pratt <mcpratt@pm.me>
These boards are sister boards
exactly the same hardware except that ECB1200 has:
- QCA9557
- 2 RF circuits/antennas per band instead of 3
- a resistor blocking UART RX line
Tested-by: sven friedmann <sf.openwrt@okay.ms>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB1200
Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.
**Specification:**
- QCA9557 SOC MIPS, 2.4 GHz (2x2)
- QCA9882 WLAN PCIe card, 5 GHz (2x2)
- AR8035-A switch RGMII, GbE with 802.3af PoE, 25 MHz clock
- 40 MHz reference clock
- 16 MB FLASH 25L12845EMI-10G
- 2x 64 MB RAM 1538ZFZ V59C1512164QEJ25
- UART at JP1 (unpopulated, RX shorted to ground)
- 4 external antennas
- 4 LEDs, 1 button (power, eth, wifi2g, wifi5g) (reset)
**MAC addresses:**
MAC Addresses are labeled as ETH and 5GHZ
U-boot environment has the vendor MAC addresses
MAC addresses in ART do not match vendor
eth0 ETH *:5c u-boot-env ethaddr
phy0 5GHZ *:5d u-boot-env athaddr
---- ---- ???? art 0x0/0x6
**Installation:**
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
(see TFTP recovery)
perform a sysupgrade
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART pinout at JP1
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is TFTP or serial access to u-boot
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
rename initramfs-kernel.bin to 'ap.bin'
make the file available on a TFTP server at 192.168.1.10
power board while holding or pressing reset button repeatedly
or with serial access:
run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
then `bootm` with the load address
**Format of OEM firmware image:**
The OEM software of ECB1200 is a heavily modified version
of Openwrt Altitude Adjustment 12.09.
This Engenius board, like ECB1750, uses a proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
**Note on PLL-data cells:**
The default PLL register values will not work
because of the AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
However the registers that u-boot sets are not ideal and sometimes wrong...
the at803x driver supports setting the RGMII clock/data delay on the PHY side.
This way the pll-data register only needs to handle invert and phase.
for this board clock invert is needed on the MAC side
all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Incorrect values were used for the switch initialization causing the
lan port leds to not light up in case of 10Mb or 100Mb connections.
This commit fixes this problem and removes unused values.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
All modifications made by update_kernel.sh run in a fresh clone
without any existing toolchains.
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
Commit "initramfs: switch to tmpfs to fix ujail" switched initramfs to
now use tmpfs, it causes $(rootfs_type) to now return tmpfs when
running initramfs image instead of being empty.
This broke initramfs detection which is required so that when installing
on MikroTik devices firmware partition would first get erased fully
before writing.
So, lets test for $(rootfs_type) returning "tmpfs" instead.
Fixes: 7fd3c68 ("initramfs: switch to tmpfs to fix ujail)
Signed-off-by: Robert Marko <robimarko@gmail.com>
The flash capacity is divided in two flash chips and currently only
first is used. Increase available space for OpenWrt by additional 16 MiB
using mtd-concat driver. Because U-Boot might not be able to load kernel
image spanned through two flash chips, the size of kernel is limited
to space available on first first chip.
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
AirTight Networks (later renamed to Mojo Networks) C-75 is a dual-band
access point, also sold by WatchGuard under name AP320.
Specification
SoC: Qualcomm Atheros QCA9550
RAM: 128 MiB DDR2
Flash: 2x 16 MiB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
5 GHz 3T3R QCA9890 oversized Mini PCIe card
Ethernet: 2x 10/100/1000 Mbps QCA8334
port labeled LAN1 is PoE capable (802.3at)
USB: 1x 2.0
LEDs: 7x which two are GPIO controlled, four switch controlled, one
controlled by wireless driver
Buttons: 1x GPIO controlled
Serial: RJ-45 port, Cisco pinout
baud: 115200, parity: none, flow control: none
JTAG: Yes, pins marked J1 on PCB
Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to one of LAN ports.
3. Connect to serial port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
bootm 0x81000000
6. Wait about 1 minute for OpenWrt to boot.
7. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
8. After flashing, the access point will reboot to OpenWrt. Wait few
minutes, until the Power LED stops blinking, then it's ready for
configuration.
Known issues
Green power LED does not work.
Additional information
The U-Boot fails to initialise ethernet ports correctly when a UART
adapter is attached to UART pins (marked J3 on PCB).
Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
phy-mode is already set to rgmii for eth0 and sgmii for eth1 in
qca955x.dtsi, no need to do that again in the device DTS files.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device has (almost?) identical hardware to the F9J1108 v2 but uses
a different firmware magic and model number.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1Gbit/s ports)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)
MAC addresses based on OEM firmware:
Interface Address Location
--------- ------- --------
lan *:5A sometimes in 0x6
wan *:5B 0x0
2.4Ghz *:5A 0x1002
5Ghz As per mini PCIe EEPROM
Flashing instructions:
The factory.bin can be flashed via the Belkin web UI or via the uboot
HTTP upgrade page (which is by default listening on 192.168.2.1). Once
the factory.bin has been written, sysupgrade.bin will work as usual.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
Belkin F9J1108 v2 and F9K1115 v2 are (seemingly) identical hardware
with different model numbers. Extract all non-device specific code to a
common .dtsi so it can be re-used when adding support for the
F9K1115 v2.
Similar to the .dtsi most of the image building recipe code can be
re-used. Move everything except the device model, edimax header magic
and edimax header model into a shared build recipe.
Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[drop duplicate TARGET_DEVICES, add EDIMAX_* to DEVICE_VARS, edit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is the non-US build of the F9K1115 v2, with a different
firmware magic.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1gbps)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)
MAC addresses based on OEM firmware:
Interface Address Location
--------- ------- --------
lan *:5A sometimes in 0x6
wan *:5B 0x0
2.4Ghz *:5A 0x1002
5Ghz As per mini PCIe EEPROM
Flashing instructions:
The factory.bin can be flashed via the Belkin web UI or via the uboot
http upgrade page.
Once the factory.bin has been written, sysupgrade.bin will work as usual.
Signed-off-by: Damien Mascord <tusker@tusker.org>
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[wrap commit message/code, adjust label-mac-device, whitespace fixes,
merge block in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TP-Link TL-WDR7500 v3 from ar71xx to ath79.
The basic features appear to be identical to the Archer C7 v1, however
it has the (supported) QCA9880-BR4A chip of the C7 v2.
Specifications:
SoC: QCA9558
CPU: 720 MHz
Flash: 8 MiB
RAM: 128 MiB
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac
Qualcomm Atheros QCA9880-BR4A
Ethernet: 5x Gbit ports
USB: 2x 2.0 ports
Flashing instructions:
Upload the factory image via the OEM firmware GUI.
TFTP recovery appears to be available as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
None of the spi drivers on ath79 uses the num-cs property.
Cc: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Chuanhong Guo <gch981213@gmail.com>
Remove the MDIO reset from the MAC mode for the AR934x SoC family.
The reset is currently also defined for the MDIO node, where the reset
is acquired exclusively.
In case the ethernet node is enabled, this triggers a warning, as the
reset is already acquired by the MAC.
Signed-off-by: David Bauer <mail@david-bauer.net>
The TPLink CPE devices CPE210/CPE510 based on ar9344 have a build-in
Low Noise Amplifier on both of the 2x2 mimo rx chains.
This patch activates those two LNAs in the respective receiving chains
and hence improves the RX sensitivity by about 20dB.
Tested on CPE510 v2 & v3.
Signed-off-by: Thomas Huehn <thomas.huehn@hs-nordhausen.de>
Acked-by: Robert Marko <robimarko@gmail.com>
Because the bug described in FS#2428 has been fixed with bf2870c1d9
("kernel: fix mtd partition erase < parent_erasesize writes") these
devices can now safely do sysupgrade.
Restore sysupgrade support disabled in:
0cc87b3bac ("ath79: image: disable sysupgrade images for routerstations
and ja76pf2")
cc5256a8bf ("ath79: base-files: disable sysupgrade for routerstations
and ja76pf2")
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
[move Build block, remove check-size argument, wrap sysupgrade line,
make commit message easier to read]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Recent kernel bumps & target patch refactors have left some patch fuzz
around. Refreshed kernel patches using update_kernel script.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
Replace NETGEAR_KERNEL_MAGIC by UIMAGE_MAGIC to better match the
variable's purpose. This allows to drop the custom
Build/netgear-uImage.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
[keep UIMAGE_MAGIC definitions even for default value]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: A8J-EAP300A
Engenius EAP300 v2 is an indoor wireless access point with a
100/10-BaseT ethernet port, 2.4 GHz wireless, internal antennas,
and 802.3af PoE.
**Specification:**
- AR9341
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 64 MB RAM
- UART at J1 (populated)
- Ethernet port with POE
- internal antennas
- 3 LEDs, 1 button (power, eth, wlan) (reset)
**MAC addresses:**
phy0 *:d3 art 0x1002 (label)
eth0 *:d4 art 0x0/0x6
**Installation:**
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, can cause kernel loop or halt
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery** (unstable / not reliable):
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board while holding or pressing reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP300 v2 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel size to be no greater than 1536k
and otherwise the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[clarify MAC address section, bump PKG_RELEASE for uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Manually rebased patches:
ath79/patches-5.4/910-unaligned_access_hacks.patch
bcm27xx/patches-5.4/950-0135-spi-spi-bcm2835-Disable-forced-software-CS.patch
bcm27xx/patches-5.4/950-0414-SQUASH-Fix-spi-driver-compiler-warnings.patch
ipq806x/patches-5.4/093-4-v5.8-ipq806x-PCI-qcom-Use-bulk-clk-api-and-assert-on-error.patch
Removed since could be reverse-applied by quilt and found to be included upstream:
ipq806x/patches-5.4/096-PCI-qcom-Make-sure-PCIe-is-reset-before-init-for-rev.patch
All modifications made by update_kernel.sh
Build system: x86_64
Build-tested: ipq806x/R7800, ath79/generic, bcm27xx/bcm2711
Run-tested: ipq806x/R7800
No dmesg regressions, everything functional
Signed-off-by: John Audia <graysky@archlinux.us>
[refresh altered targets after rebase]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
qca9558_devolo_dvl1xxx.dtsi contains device specific nodes which
are inherited for some DTS files and overwritten for others.
This is considered confusing, so move the relevant nodes/properties
to the devices and only keep the shared stuff in the DTSI.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
[clarify commit title/message, move &gmac_config in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link EAP225 v3 is an AC1350 (802.11ac Wave-2) ceiling mount access
point. Serial port access for debricking requires fine soldering.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MINO
* Ethernet (AR8033): 1× 1GbE, 802.3at PoE
Flashing instructions:
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface
Debricking:
* Serial port can be soldered on PCB J3 (1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors R225 (TXD) and R237 (RXD).
Do NOT bridge R230.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From OEM boot log:
Using interface ath0 with hwaddr b0:...:3e and ssid "..."
Using interface ath10 with hwaddr b0:...:3f and ssid "..."
Tested by forum user blinkstar88
Signed-off-by: Sander Vanheule <sander@svanheule.net>
TP-Link EAP225-Outdoor v1 is an AC1200 (802.11ac Wave-2) pole or wall
mount access point. Debricking requires access to the serial port, which
is non-trivial.
Device specifications:
* SoC: QCA9563 @ 775MHz
* Memory: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 2x2
* Wireless 5GHz (QCA9886): a/n/ac 2x2 MU-MIMO
* Ethernet (AR8033): 1× 1GbE, PoE
Flashing instructions:
* ssh into target device with recent (>= v1.6.0) firmware
* run `cliclientd stopcs` on target device
* upload factory image via web interface
Debricking:
To recover the device, you need access to the serial port. This requires
fine soldering to test points, or the use of probe pins.
* Open the case and solder wires to the test points: RXD, TXD and TPGND4
* Use a 3.3V UART, 115200 baud, 8n1
* Interrupt bootloader by holding ctrl+B during boot
* upload initramfs via built-in tftp client and perform sysupgrade
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From stock ifconfig:
ath0 Link encap:Ethernet HWaddr D8:...:2E
ath10 Link encap:Ethernet HWaddr D8:...:2F
br0 Link encap:Ethernet HWaddr D8:...:2E
eth0 Link encap:Ethernet HWaddr D8:...:2E
Tested by forum user PolynomialDivision on firmware v1.7.0.
UART access tested by forum user arinc9.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
TP-Link EAP245 v1 is an AC1750 (802.11ac Wave-1) ceiling mount access point.
Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9880): a/n/ac, 3x3
* Ethernet (AR8033): 1× 1GbE, 802.3at PoE
Flashing instructions:
* Upgrade the device to firmware v1.4.0 if necessary
* Exploit the user management page in the web interface to start telnetd
by changing the username to `;/usr/sbin/telnetd -l/bin/sh&`.
* Immediately change the malformed username back to something valid
(e.g. 'admin') to make ssh work again.
* Use the root shell via telnet to make /tmp world writeable (chmod 777)
* Extract /usr/bin/uclited from the device via ssh and apply the binary
patch listed below. The patch is required to prevent `uclited -u` in
the last step from crashing.
* Copy the patched uclited programme back to the device at /tmp/uclited
(via ssh)
* Upload the factory image to /tmp/upgrade.bin (via ssh)
* Run `chmod +x /tmp/uclited && /tmp/uclited -u` to install OpenWrt.
--- xxd uclited
+++ xxd uclited-patched
@@ -53796,7 +53796,7 @@
000d2240: 8c44 0000 0320 f809 0000 0000 8fbc 0010 .D... ..........
000d2250: 8fa6 0a4c 02c0 2821 8f82 87b8 0000 0000 ...L..(!........
-000d2260: 8c44 0000 0c13 45e0 27a7 0018 8fbc 0010 .D....E.'.......
+000d2260: 8c44 0000 2402 0000 0000 0000 8fbc 0010 .D..$...........
000d2270: 1040 001d 0000 1821 8f99 8374 3c04 0058 .@.....!...t<..X
000d2280: 3c05 0056 2484 a898 24a5 9a30 0320 f809 <..V$...$..0. ..
Debricking:
* Serial port can be soldered on PCB J3 (1: TXD, 2: RXD, 3: GND, 4: VCC)
* Bridge unpopulated resistors R225 (TXD) and R237 (RXD).
Do NOT bridge R230.
* Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via the LuCI web interface
setenv ipaddr 192.168.1.1 # default, change as required
setenv serverip 192.168.1.10 # default, change as required
tftp 0x80800000 initramfs.bin
bootelf $fileaddr
Tested on the EAP245 v1 running the latest firmware (v1.4.0). The binary
patch might not apply to uclited from other firmware versions.
EAP245 v1 device support was originally developed and maintained by
Julien Dusser out-of-tree. This patch and "ath79: prepare for 1-port
TP-Link EAP2x5 devices" are based on that work.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
TP-Link has developed a number of access points based on the AP152
reference board. In the EAP-series of 802.11ac access points, this
includes the following devices with one ethernet port:
* EAP225 v1/v2
* EAP225 v3
* EAP225-Outdoor v1
* EAP245 v1
Since the only differences between these devices are the ath10k wireless
radios and LEDs, a common base is provided for the overlapping support
requirements.
Hardware commonalities:
* SoC: QCA9563-AL3A MIPS 74kc v5.0 @ 775MHz, AHB @ 258MHz
* RAM: 128MiB DDR2 @ 650MHz
* Flash: 16MiB SPI NOR
* Wi-Fi 2.4GHz: provided by SoC
* Wi-Fi 5Ghz: ath10k chip on PCIe
* Ethernet: AR8033-AL1A, one 1GbE port (802.3at PoE)
Signed-off-by: Sander Vanheule <sander@svanheule.net>