Commit Graph

67 Commits

Author SHA1 Message Date
David Bauer
e16a0e7e88 ipq40xx: add support for Extreme Networks WS-AP3915i
Hardware
--------
Qualcomm IPQ4029 WiSoC
2T2R 802.11 abgn
2T2R 802.11 nac
Macronix MX25L25635E SPI-NOR (32M)
512M DDR3 RAM
1x Gigabit LAN
1x Cisco RJ-45 Console port
Settings: 115200 8N1

Installation
------------

1. Attach to the Console port. Power up the device and press the s key
   to interrupt autoboot.

2. The default username / password to the bootloader is admin / new2day

3. Update the bootcommand to allow loading OpenWrt.

   $ setenv ramboot_openwrt "setenv serverip 192.168.1.66;
     setenv ipaddr 192.168.1.1; tftpboot 0x86000000 openwrt-3915.bin;
     bootm"
   $ setenv boot_openwrt "sf probe;
     sf read 0x88000000 0x280000 0xc00000; bootm 0x88000000"
   $ setenv bootcmd "run boot_openwrt"
   $ saveenv

4. Download the OpenWrt initramfs image. Serve it using a TFTP server as
   "openwrt-3915.bin" at 192.1681.66.

5. Download & boot the OpenWrt initramfs image on the access point.

   $ run ramboot_openwrt

6. Wait for OpenWrt to start.

7. Download and transfer the sysupgrade image to the device using e.g.
   SCP.

8. Install OpenWrt to the device using "sysupgrade"

   $ sysupgrade -n /path/to/openwrt.bin

Signed-off-by: David Bauer <mail@david-bauer.net>
2022-09-06 02:55:05 +02:00
Mark Mentovai
7f54bf6fe2
ipq40xx: add MikroTik wAP ac (RBwAPG-5HacD2HnD) support
The MikroTik wAP ac (RBwAPG-5HacD2HnD) is a dual-band dual-radio
802.11ac wireless access point with integrated antenna and two Ethernet
ports in a weatherproof enclosure. See
https://mikrotik.com/product/wap_ac for more information.

Important: this is the new ipq40xx-based wAP ac, not the older
ath79-based wAP ac (RBwAPG-5HacT2HnD), already supported in OpenWrt.

Specifications:
 - SoC: Qualcomm Atheros IPQ4018
 - CPU: 4x ARM Cortex A7
 - RAM: 128MB
 - Storage: 16MB NOR flash
 - Wireless
    - 2.4GHz: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
    - 5GHz: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
 - Ethernet: Built-in IPQ4018 (SoC, QCA8075), 2x 1000/100/10Mb/s ports,
   one with 802.3af/at PoE in

Installation:
Boot the initramfs image via TFTP, then flash the sysupgrade image using
sysupgrade. Details at https://openwrt.org/toh/mikrotik/common.

Notes:
This preserves the MAC addresses of the physical Ethernet ports:
 - eth0 corresponds to the physical port labeled ETH1 and has the base
   MAC address. This port can be used to power the device.
 - eth1 corresponds to the physical port labeled ETH2 and has a MAC
   address one greater than the base.

MAC addresses are set from /lib/preinit/05_set_iface_mac_ipq40xx.sh
rather than /etc/board.d/02_network so that they are in effect for
preinit. This should likely be done for other MikroTik devices and
possibly other non-MikroTik devices as well.

As this device has 2 physical ports, they are each connected to their
respective PHYs, allowing the link status to be visible to software.
Since they are not marked on the case with any role (such as LAN or
WAN), both are bridged to the lan network by default, although this can
easily be changed if needed.

Signed-off-by: Mark Mentovai <mark@mentovai.com>
2022-07-18 01:45:47 +02:00
Matthew Hagan
811538ab22 ipq40xx: add support for Meraki MR74
The Meraki MR74 is part of the "Insect" series. This device is
essentially an outdoor variant of the MR33 with identical hardware, but
requiring a config@3 DTS option to be set to allow booting with the
stock u-boot.

The install procedure is replicated from the MR33, with the exception
being that the MR74 sysupgrade image must be used.

Signed-off-by: Matthew Hagan <mnhagan88@gmail.com>
2022-06-19 12:31:02 +02:00
Peter Adkins
b4184c666c ipq40xx: add support for Linksys WHW01 v1
This patch adds support for Linksys WHW01 v1 ("Velop") [FCC ID Q87-03331].

Specification
-------------

SOC:             Qualcomm IPQ4018
WiFi 1:          Qualcomm QCA4019 IEEE 802.11b/g/n
WiFi 2:          Qualcomm QCA4019 IEEE 802.11a/n/ac
Bluetooth:       Qualcomm CSR8811 (A12U)
Ethernet:        Qualcomm QCA8072 (2-port)
SPI Flash 1:     Mactronix MX25L1605D (2MB)
SPI Flash 2:     Winbond W25M02GV (256MB)
DRAM:            Nanya NT5CC128M16IP-DI (256MB)
LED Controller:  NXP PCA963x (I2C)
Buttons:         Single reset button (GPIO).

Notes
-----

There does not appear to be a way to trigger TFTP recovery without entering
U-Boot. The device must be opened to access the serial console in order to
first flash OpenWrt onto a device from factory.

The device has automatic recovery backed by a second set of partitions on
the larger of the two SPI flash ICs. Both the primary and secondary must
be flashed to prevent accidental rollback to "factory" after 3 failed boot
attempts.

Serial console
--------------

A serial console is available on the following pins of the populated J2
connector on the device mainboard (115200 8n1).

(<-- Top of PCB / Device)

  J2
  [o o o o o o]
       |   | |
       |   |  `-- GND
       |    `---- TX
       `--------- RX

Installation instructions
-------------------------

1. Setup TFTP server with server IP set to 192.168.1.236.
2. Copy compiled `...squashfs-factory.bin` to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Revert to "factory"
-------------------

1. Download latest firmware update from vendor support site.
2. Copy extracted `.img` file to `nodes-jr.img` in tftp root.
3. Connect to console using pinout detailed in the serial console section.
4. Power on device and press enter when prompted to drop into U-Boot.
5. Flash first partition device via `run flashimg`.
6. Once complete, reset device and allow to power up completely.
7. Once comfortable with device upgrade reboot and drop back into U-Boot.
8. Flash the second partition (recovery) via `run flashimg2`.

Link: https://github.com/openwrt/openwrt/pull/3682
Signed-off-by: Peter Adkins <peter@sunkenlab.com>
(calibration from nvmem, updated to 5.10+5.15)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-06-05 21:19:32 +02:00
Brian Norris
f1c041e34f ipq40xx: Add subtarget for Google WiFi (Gale)
Google WiFi (codename: Gale) is an IPQ4019-based AP, with 2 Ethernet
ports, 2x2 2.4+5GHz WiFi, 512 MB RAM, 4 GB eMMC, and a USB type C port.
In its stock configuration, it runs a Chromium OS-based system, but you
wouldn't know it, since you can only manage it via a "cloud" +
mobile-app system.

The "v2" label is coded into the bootloader, which prefers the
"google,gale-v2" compatible string. I believe "v1" must have been
pre-release hardware.

Note: this is *not* the Google Nest WiFi, released in 2019.

I include "factory.bin" support, where we generate a GPT-based disk
image with 2 partitions -- a kernel partition (using the custom "Chrome
OS kernel" GUID type) and a root filesystem partition. See below for
flashing instructions.

Sysupgrade is supported via recent emmc_do_upgrade() helper.

This is a subtarget because it enables different features
(FEATURES=boot-part rootfs-part) whose configurations don't make sense
in the "generic" target, and because it builds in a few USB drivers,
which are necessary for installation (installation is performed by
booting from USB storage, and so these drivers cannot be built as
modules, since we need to load modules from USB storage).

Flashing instructions
=====================

Documented here:
https://openwrt.org/inbox/toh/google/google_wifi

Note this requires booting from USB storage.

Features
========

I've tested:

 * Ethernet, both WAN and LAN ports
 * eMMC
 * USB-C (hub, power-delivery, peripherals)
 * LED0 (R/G/B)
 * WiFi (limited testing)
 * SPI flash
 * Serial console: once in developer mode, console can be accessed via
   the USB-C port with SuzyQable, or other similar "Closed Case
   Debugging" tools:
     https://chromium.googlesource.com/chromiumos/third_party/hdctools/+/master/docs/ccd.md#suzyq-suzyqable
 * Sysupgrade

Not tested:

 * TPM

Known not working:

 * Reboot: this requires some additional TrustZone / SCM
   configuration to disable Qualcomm's SDI. I have a proposal upstream,
   and based on IRC chats, this might be acceptable with additional DT
   logic:
     [RFC PATCH] firmware: qcom_scm: disable SDI at boot
     https://lore.kernel.org/linux-arm-msm/20200721080054.2803881-1-computersforpeace@gmail.com/
 * SMP: enabling secondary CPUs doesn't currently work using the stock
   bootloader, as the qcom_scm driver assumes newer features than this
   TrustZone firmware has. I posted notes here:
     [RFC] qcom_scm: IPQ4019 firmware does not support atomic API?
     https://lore.kernel.org/linux-arm-msm/20200913201608.GA3162100@bDebian/
 * There's a single external button, and a few useful internal GPIO
   switches. I haven't hooked them up.

The first two are fixed with subsequent commits.

Additional notes
================

Much of the DTS is pulled from the Chrome OS kernel 3.18 branch, which
the manufacturer image uses.

Note: the manufacturer bootloader knows how to patch in calibration data
via the wifi{0,1} aliases in the DTB, so while these properties aren't
present in the DTS, they are available at runtime:

  # ls -l
/sys/firmware/devicetree/base/soc/wifi@a*/qcom,ath10k-pre-calibration-data
  -r--r--r--    1 root     root         12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a000000/qcom,ath10k-pre-calibration-data
  -r--r--r--    1 root     root         12064 Jul 15 19:11 /sys/firmware/devicetree/base/soc/wifi@a800000/qcom,ath10k-pre-calibration-data

Ethernet MAC addresses are similarly patched in via the ethernet{0,1} aliases.

Signed-off-by: Brian Norris <computersforpeace@gmail.com>
(updated 901 - x1pro moved in the process)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-03-25 18:14:13 +01:00
Pawel Dembicki
a91ab8bc05 ipq40xx: add support for ZTE MF286D
ZTE MF286D is a LTE router with four gigabit ethernet ports
and integrated QMI mPCIE modem.

Hardware specification:

  - CPU: IPQ4019
  - RAM: 256MB
  - Flash: NAND 128MB + NOR 2MB
  - WLAN1:  Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2
  - WLAN2:  Qualcomm Atheros QCA4019 5GHz 802.11anac 2x2:2
  - LTE: mPCIe cat 12 card (Modem chipset MDM9250)
  - LAN: 4 Gigabit Ports
  - USB: 1x USB2.0 (regular port). 1x USB3.0 (mpcie - used by the modem)
  - Serial console: X8 connector 115200 8n1

Known issues:

  - Many LEDs are driven by the modem. Only internal LEDs and wifi LEDs
    are driven by cpu.
  - Wifi LED is triggered by phy0tpt only
  - No VoIP support
  - LAN1/WAN port is configured as WAN
  - ZTE gives only one MAC per device. Use +1/+2/+3 increment for WAN
    and WLAN0/1

Opening the case:

1. Take of battery lid (no battery support for this model, battery cage
   is dummy).
2. Unscrew screw placed behind battery lid.
3. Take off back cover. It attached with multiple plastic clamps.
4. Unscrew four more screws hidden behind back case.
5. Remove front panel from blue chassis. There are more plastic
   clamps.
6. Unscrew two boards, which secures the PCB in the chassis.
7. Extract board from blue chassis.

Console connection (X8 connector):

1. Parameters: 115200 8N1
2. Pin description: (from closest pin to X8 descriptor to farthest)
    - VCC (3.3V)
    - TX
    - RX
    - GND

Install Instructions:

Serial + initramfs:
1. Place OpenWrt initramfs image for the device on a TFTP in
   the server's root. This example uses Server IP: 192.168.1.3
2. Connect serial console (115200,8n1) to X8 connector.
3. Connect TFTP server to RJ-45 port.
4. Stop in u-Boot and run u-Boot commands:
	setenv serverip 192.168.1.3
	setenv ipaddr 192.168.1.72
	set fdt_high 0x85000000
	tftp openwrt-ipq40xx-generic-zte_mf286d-initramfs-fit-zImage.itb
	bootm $loadaddr
5. Please make backup of original partitions, if you think about revert
   to stock.
6. Login via ssh or serial and remove stock partitions:
	ubiattach -m 9
	ubirmvol /dev/ubi0 -N ubi_rootfs
	ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. Install image via "sysupgrade -n".

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
(cosmetic changes to the commit message)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-02-05 00:44:35 +01:00
Alar Aun
70eedac9b3 ipq40xx: add MikroTik cAP ac support
This adds support for the MikroTik RouterBOARD RBcAPGi-5acD2nD
(cAP ac), a  indoor dual band, dual-radio 802.11ac wireless AP, two
10/100/1000 Mbps Ethernet ports.

See https://mikrotik.com/product/cap_ac for more info.

Specifications:
 - SoC: Qualcomm Atheros IPQ4018
 - RAM: 128 MB
 - Storage: 16 MB NOR
 - Wireless:
   · Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
   · Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
 - Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 2x 1000/100/10 port,
   PoE in and passive PoE out

Unsupported:
 - PoE out

Installation:
Boot the initramfs image via TFTP and then flash the sysupgrade
image using "sysupgrade -n"

Signed-off-by: Alar Aun <alar.aun@gmail.com>
2022-02-01 23:18:58 +01:00
Joshua Roys
51b9aef553 ipq40xx: add support for ASUS RT-ACRH17/RT-AC42U
SOC:	IPQ4019
CPU:	Quad-core ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
DRAM:	256 MB
NAND:	128 MiB Macronix MX30LF1G18AC
ETH:	Qualcomm Atheros QCA8075 Gigabit Switch (4x LAN, 1x WAN)
USB:	1x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1:	Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2
WLAN2:	Qualcomm Atheros QCA9984 5GHz 802.11nac 4x4:4
INPUT:	1x WPS, 1x Reset
LEDS:	Status, WIFI1, WIFI2, WAN (red & blue), 4x LAN

This board is very similar to the RT-ACRH13/RT-AC58U. It must be flashed
with an intermediary initramfs image, the jffs2 ubi volume deleted, and
then finally a sysupgrade with the final image performed.

Signed-off-by: Joshua Roys <roysjosh@gmail.com>
(added ALT0)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2022-01-15 17:21:01 +01:00
Christian Lamparter
d641a60478 ipq40xx: nvmem cells for EZVIZ CS-W3-WD1200G EUP
introduce nvmem pre-cal + mac-address cells for both Wifis
and ethernet on the EZVIZ CS-W3-WD1200G EUP. This is one of
the few devices in which the correct mac adress is already
at the right place for Wifi, so no separate nvmem cell is
needed.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-04 00:36:47 +01:00
Bjørn Mork
8ac8c09f5e ipq40xx: sysupgrade: drop disabled UBI to UBI logic
The commented out code is not required, as the comment
indicates.

The purpose of this code seems to be to avoid issues caused
by partially overwriting an existing UBI partition, where some
of the erase counters would be reset but not the unmodified
ones.  This problem has been solved in a more generic way by
the UBI EOF marker. This ensures that any old PEBs after the
marker are properly initialized.  It is therefore unnecessary
to erase the whole partition before flashing a new OpenWrt
factory image.

Signed-off-by: Bjørn Mork <bjorn@mork.no>
2021-12-03 12:23:02 +01:00
TruongSinh Tran-Nguyen
febc2b831f
ipq40xx: add support for GL.iNet GL-B2200
This patch adds supports for the GL-B2200 router.

Specifications:
  - SOC: Qualcomm IPQ4019 ARM Quad-Core
  - RAM: 512 MiB
  - Flash: 16 MiB NOR - SPI0
  - EMMC: 8GB EMMC
  - ETH: Qualcomm QCA8075
  - WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
  - WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
  - WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
  - INPUT: Reset, WPS
  - LED: Power, Internet
  - UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
  - UART2: On board with BLE module
  - SPI1: On board socket for Zigbee module

Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.

What's working:
- WiFi 2G, 5G
- WPA2/WPA3

Not tested:
- Bluetooth LE/Zigbee

Credits goes to the original authors of this patch.

V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade

Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
2021-12-02 20:43:07 +00:00
Alexander Couzens
8d62304785
ipq40xx: add MikroTik LHGG-60ad outdoor 802.11ad (60GHz) dish
LHGG-60ad is IPQ4019 + wil6210 based.

Specification:

- Qualcomm IPQ4019 (717 MHz)
- 256 MB of RAM (DDR3L)
- 16 MB (SPI NOR) of flash
- 1x Gbit ethernet, 802.3af/at POE IN connected through AR8035.
- WLAN: wil6210 802.11ad PCI card
- No USB or SD card ports
- UART disabled
- 8x LEDs

Biggest news is the wil6210 PCI card.
Integration for its configuration and detection has already been taken
care of when adding support for TP-Link Talon AD7200.
However, signal quality is much lower than with stock firmware, so
probably additional board-specific data has to be provided to the
driver and is still missing at the moment.

Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[Fix Ethernet Interface]
Signed-off-by: Nick Hainke <vincent@systemli.org>
2021-12-02 19:46:14 +00:00
Felix Matouschek
1cc3b95efc ipq40xx: Add support for Teltonika RUTX10
This patch adds support for the Teltonika RUTX10.
This device is an industrial DIN-rail router with 4 ethernet ports,
2.4G/5G dualband WiFi, Bluetooth, a USB 2.0 port and two GPIOs.

The RUTX series devices are very similiar so common parts of the DTS
are kept in a DTSI file. They are based on the QCA AP-DK01.1-C1 dev
board.

See https://teltonika-networks.com/product/rutx10 for more info.

Hardware:
  SoC:                 Qualcomm IPQ4018
  RAM:                 256MB DDR3
  SPI Flash 1:         XTX XT25F128B (16MB, NOR)
  SPI Flash 2:         XTX XT26G02AWS (256MB, NAND)
  Ethernet:            Built-in IPQ4018 (SoC, QCA8075), 4x 10/100/1000 ports
  WiFi 1:              Qualcomm QCA4019 IEEE 802.11b/g/n
  Wifi 2:              Qualcomm QCA4019 IEEE 802.11a/n/ac
  USB Hub:             Genesys Logic GL852GT
  Bluetooth:           Qualcomm CSR8510 (A10U)
  LED/GPIO controller: STM32F030 with custom firmware
  Buttons:             Reset button
  Leds:                Power (green, cannot be controlled)
                       WiFi 2.4G activity (green)
                       WiFi 5G activity (green)

MACs Details verified with the stock firmware:
   eth0:             Partition 0:CONFIG Offset: 0x0
   eth1:             = eth0 + 1
   radio0 (2.4 GHz): = eth0 + 2
   radio1 (5.0 GHz): = eth0 + 3
Label MAC address is from eth0.

The LED/GPIO controller needs a separate kernel driver to function.
The driver was extracted from the Teltonika GPL sources and can be
found at following feed: https://github.com/0xFelix/teltonika-rutx-openwrt

USB detection of the bluetooth interface is sometimes a bit flaky. When
not detected power cycle the device. When the bluetooth interface was
detected properly it can be used with bluez / bluetoothctl.

Flash instructions via stock web interface (sysupgrade based):
  1. Set PC to fixed ip address 192.168.1.100
  2. Push reset button and power on the device
  3. Open u-boot HTTP recovery at http://192.168.1.1
  4. Upload latest stock firmware and wait until the device is rebooted
  5. Open stock web interface at http://192.168.1.1
  6. Set some password so the web interface is happy
  7. Go to firmware upgrade settings
  8. Choose
     openwrt-ipq40xx-generic-teltonika_rutx10-squashfs-nand-factory.ubi
  9. Set 'Keep settings' to off
  10. Click update, when warned that it is not a signed image proceed

Return to stock firmware:
  1. Set PC to fixed ip address 192.168.1.100
  2. Push reset button and power on the device
  3. Open u-boot HTTP recovery at http://192.168.1.1
  4. Upload latest stock firmware and wait until the device is rebooted

Note: The DTS expects OpenWrt to be running from the second rootfs
partition. u-boot on these devices hot-patches the DTS so running from the
first rootfs partition should also be possible. If you want to be save follow
the instructions above. u-boot HTTP recovery restores the device so that when
flashing OpenWrt from stock firmware it is flashed to the second rootfs
partition and the DTS matches.

Signed-off-by: Felix Matouschek <felix@matouschek.org>
2021-11-28 18:39:01 +01:00
Robert Marko
3ad229db0b ipq40xx: add support for MikroTik hAP ac3
This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD
(hAP ac³), a  indoor dual band, dual-radio 802.11ac
wireless AP with external omnidirectional antennae, USB port, five
10/100/1000 Mbps Ethernet ports and PoE passthrough.

See https://mikrotik.com/product/hap_ac3 for more info.

Specifications:
 - SoC: Qualcomm Atheros IPQ4019
 - RAM: 256 MB
 - Storage: 16 MB NOR + 128 MB NAND
 - Wireless:
   · Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
   · Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae
 - Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port,
             passive PoE in, PoE passtrough on port 5
- 1x USB Type A port

Installation:
1. Boot the initramfs image via TFTP
2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1"
3. Use ubiformat to remove MikroTik specific UBI volumes
* Detach the UBI partition by running: "ubidetach -d 0"
* Format the partition by running: "ubiformat /dev/mtdN -y"
Replace mtdN with the correct mtd index from step 2.
3. Flash the sysupgrade image using "sysupgrade -n"

Signed-off-by: Robert Marko <robimarko@gmail.com>
Tested-by: Mark Birss <markbirss@gmail.com>
Tested-by: Michael Büchler <michael.buechler@posteo.net>
Tested-by: Alex Tomkins <tomkins@darkzone.net>
2021-11-28 17:19:52 +01:00
Richard Yu
12d33d388c ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)
P&W R619AC is a IPQ4019 Dual-Band AC1200 router.
It is made by P&W (p2w-tech.com) known as P&W R619AC
but marketed and sold more popularly as G-DOCK 2.0.

Specification:

* SOC: Qualcomm Atheros IPQ4019 (717 MHz)
* RAM: 512 MiB
* Flash: 16 MiB (NOR) + 128 MiB (NAND)
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN)
* Wireless:
  - 2.4 GHz b/g/n Qualcomm Atheros IPQ4019
  - 5 GHz a/n/ac Qualcomm Atheros IPQ4019
* USB: 1 x USB 3.0
* LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED)
* Input: 1 x reset
* 1 x MicroSD card slot
* Serial console: 115200bps, pinheader J2 on PCB
* Power: DC 12V 2A
* 1 x Unpopulated mPCIe Slot (see below how to connect it)
* 1 x Unpopulated Sim Card Slot

Installation:
1. Access to tty console via UART serial
2. Enter failsafe mode and mount rootfs
   <https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset>
3. Edit inittab to enable shell on tty console
   `sed -i 's/#ttyM/ttyM/' /etc/inittab`
4. Reboot and upload `-nand-factory.bin` to the router (using wget)
5. Use `sysupgrade` command to install

Another installation method is to hijack the upgrade server domain
of stock firmware, because it's using insecure http.

This commit is based on @LGA1150(at GitHub)'s work
<a4932c8d5a>
With some changes:
1. Added `qpic_bam` node in dts. I don't know much about this,
   but I observed other dtses have this node.
2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not
   working. This fix is from
   <51143b4c75>
3. Removed the 32MB NOR variant.
4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes
   wlan2g led light up.
5. Added ethphy led config in dts.
6. Changed nand partition label from `rootfs` to `ubi`.

About the 128MiB variant: The stock bootloader sets size of nand to 64MiB.
But most of this devices have 128MiB nand. If you want to use all 128MiB,
you need to modify the `MIBIB` data of bootloader. More details can be
found on github:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060>
For instructions on how to flash the MIBIB partition from u-boot console:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232>

About the Mini PCIe slot: (from "ygleg")
"The REFCLK signals on the Mini PCIe slot is not connected on
this board out of the box. If you want to use the Mini PCIe slot
on the board, you need to (preferably) solder two 0402 resistors:
R436 (REFCLK+) and R444 (REFCLK-)..."
This and much more information is provoided in the github comment:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670>

Signed-off-by: Richard Yu <yurichard3839@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
[Added comment about MIBIB+128 MiB variant. Added commit
message section about pcie slot. Renamed gpio-leds' subnodes
and added color, function+enum properties.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-14 14:28:34 +01:00
Davide Fioravanti
2cb24b3f3c ipq40xx: add support for Netgear SRR60/SRS60 and RBR50/RBS50
The Netgear SRS60 and SRR60 (sold together as SRK60) are two almost
identical AC3000 routers. The SRR60 has one port labeled as wan while
the SRS60 not. The RBR50 and RBS50 (sold together as RBK50) have a
different external shape but they have an USB 2.0 port on the back.

This patch has been tested only on SRS60 and RBR50, but should work
on SRR60 and RBS50.

Hardware
--------
SoC:   Qualcomm IPQ4019 (717 MHz, 4 cores 4 threads)
RAM:   512MB DDR3
FLASH: 4GB EMMC
ETH:
  - 3x 10/100/1000 Mbps Ethernet
  - 1x 10/100/1000 Mbps Ethernet (WAN)
WIFI:
  - 2.4GHz: 1x IPQ4019 (2x2:2)
  - 5GHz:   1x IPQ4019 (2x2:2)
  - 5GHz:   1x QCA9984 (4x4:4)
  - 6 internal antennas
BTN:
  - 1x Reset button
  - 1x Sync button
  - 1x ON/OFF button
LEDS:
  - 8 leds controlled by TLC59208F (they can be switched on/off
    independendently but the color can by changed by GPIOs)
  - 1x Red led (Power)
  - 1x Green led (Power)
UART:
  - 115200-8-N-1

Everything works correctly.

Installation
------------
These routers have a dual partition system. However this firmware works
only on boot partition 1 and the OEM web interface will always flash on
the partition currently not booted.

The following steps will use the SRS60 firmware, but you have to chose
the right firmware for your router.

There are 2 ways to install Openwrt the first time:

1) Using NMRPflash
 1. Download nmrpflash (https://github.com/jclehner/nmrpflash)
 2. Put the openwrt-ipq40xx-generic-netgear_srs60-squashfs-factory.img
	file in the same folder of the nmrpflash executable
 3. Connect your pc to the router using the port near the power button.
 4. Run "nmrpflash -i XXX -f openwrt-ipq40xx-generic-netgear_srs60-squashfs-factory.img".
	Replace XXX with your network interface (can be identified by
	running "nmrpflash -L")
 5. Power on the router and wait for the flash to complete. After about
	a minute the router should boot directly to Openwrt. If nothing
	happens try to reboot the router. If you have problems flashing
	try to set "10.164.183.253" as your computer IP address

2) Without NMRPflash
The OEM web interface will always flash on the partition currently not
booted, so to flash OpenWrt for the first time you have to switch to
boot partition 2 and then flash the factory image directly from the OEM
web interface.

To switch on partition 2 you have to enable telnet first:
 1. Go to http://192.168.1.250/debug.htm and check "Enable Telnet".
 2. Connect through telent ("telnet 192.168.1.250") and login using
	admin/password.

	To read the current boot_part:
		artmtd -r boot_part

	To write the new boot_part:
		artmtd -w boot_part 02

	Then reboot the router and then check again the current booted
	partition

Now that you are on boot partition 2 you can flash the factory Openwrt
image directly from the OEM web interface.

Restore OEM Firmware
--------------------
 1. Download the stock firmware from official netgear support.
 2. Follow the nmrpflash procedure like above, using the official
	Netgear firmware (for example SRS60-V2.2.1.210.img)

        nmrpflash -i XXX -f SRS60-V2.2.1.210.img

Notes
-----
1) You can check and edit the boot partition in the Uboot shell using
	the UART connection.
	"boot_partition_show" shows the current boot partition
	"boot_partition_set 1" sets the current boot partition to 1

2) Router mac addresses:

   LAN XX:XX:XX:XX:XX:69
   WAN XX:XX:XX:XX:XX:6a
   WIFI 2G XX:XX:XX:XX:XX:69
   WIFI 5G XX:XX:XX:XX:XX:6b
   WIFI 5G (2nd) XX:XX:XX:XX:XX:6c

   LABEL XX:XX:XX:XX:XX:69

Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
[added 5.10 changes for 901-arm-boot-add-dts-files.patch, moved
sysupgrade mmc.sh to here and renamed it, various dtsi changes]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-01 00:56:51 +01:00
Adrian Schmutzler
fac6096ad6 ipq40xx: add missing case closing symbol
Though not strictly necessary, add the closing symbol to make the
job easier for future developers editing this file.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-28 01:06:08 +02:00
Adrian Schmutzler
6f648ed7e6 treewide: remove "+" sign for increment with macaddr_add
Many people appear to use an unneeded "+" prefix for the increment
when calculating a MAC address with macaddr_add. Since this is not
required and used inconsistently [*], just remove it.

[*] As a funny side-fact, copy-pasting has led to almost all
    hotplug.d files using the "+", while nearly all of the
    02_network files are not using it.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-06-05 23:54:37 +02:00
Robert Marko
b126d9c3a3 ipq40xx: add netgear wac510 support
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.

For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>

Specifications:
SoC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
Flash1:     2 MiB Winbond W25Q16JV SPI-NOR
Flash2:     128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet:   Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
            WAN port active IEEE 802.3af/at PoE in
Wireless1:  Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2:  Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input:      (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs:       Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial:     Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
         The Serial settings are 115200-8-N-1.

Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.

In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.

Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.

Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm

Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:

Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[    1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.

Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[    2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[    2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.

Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-06-05 23:29:46 +02:00
Roger Pueyo Centelles
d1f1e5269e ipq40xx: add support for MikroTik SXTsq 5 ac
This commit adds support for the MikroTik SXTsq 5 ac (RBSXTsqG-5acD),
an outdoor 802.11ac wireless CPE with one 10/100/1000 Mbps Ethernet
port.

Specifications:
 - SoC: Qualcomm Atheros IPQ4018
 - RAM: 256 MB
 - Storage: 16 MB NOR
 - Wireless: IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 16 dBi antennae
 - Ethernet: IPQ4018 (SoC) 1x 10/100/1000 port, 10-28 Vdc PoE in
 - 1x Ethernet LED (green)
 - 7x user-controllable LEDs
  · 1x power (blue)
  · 1x user (green)
  · 5x rssi (green)

Note:
 Serial UART is probably available on the board, but it has not been
 tested.

Flashing:
 Boot via TFTP the initramfs image. Then, upload a sysupgrade image
 via SSH and flash it normally. More info at the "Common procedures
 for MikroTik products" page https://openwrt.org/toh/mikrotik/common.

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
2021-04-29 10:55:07 +02:00
Robert Marko
faea7becaf
ipq40xx: add MikroTik hAP ac2 support
This adds support for the MikroTik RouterBOARD RBD52G-5HacD2HnD-TC
(hAP ac²), a  indoor dual band, dual-radio 802.11ac
wireless AP with integrated omnidirectional antennae, USB port and  five
10/100/1000 Mbps Ethernet ports.

See https://mikrotik.com/product/hap_ac2 for more info.

Specifications:
 - SoC: Qualcomm Atheros IPQ4018
 - RAM: 128 MB
 - Storage: 16 MB NOR
 - Wireless:
   · Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
   · Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
 - Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 5x 1000/100/10 port,
             passive PoE in
- 1x USB Type A port

Installation:
Boot the initramfs image via TFTP and then flash the sysupgrade
image using "sysupgrade -n"

Signed-off-by: Robert Marko <robimarko@gmail.com>
2021-04-05 04:13:28 +02:00
Dongming Han
b9389186b0 ipq40xx: add support for GL.iNet GL-AP1300
Specifications:
SOC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
FLASH1:     4 MiB NOR
FLASH2:     128 MiB NAND
ETH:        Qualcomm QCA8075
WLAN1:      Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2:      Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT:      Reset
LED:        Power, Internet
UART1:      On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER:      On board with BLE module - by cp210x USB serial chip
            On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed

Install via uboot tftp or uboot web failsafe.

By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf

By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1

Afterwards upgrade can use sysupgrade image.

Signed-off-by: Dongming Han <handongming@gl-inet.com>
2020-12-25 10:38:13 +01:00
Stefan Schake
d3c8881194 ipq40xx: add support for devolo Magic 2 WiFi next
SOC:     IPQ4018 / QCA Dakota
CPU:     Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM:    256 MiB
NOR:     32 MiB
ETH:     Qualcomm Atheros QCA8075 (2 ports)
PLC:     MaxLinear G.hn 88LX5152
WLAN1:   Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:   Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:   RESET, WiFi, PLC Button
LEDS:    red/white home, white WiFi

To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
   initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
   the Ethernet ports. This causes the bootloader to retrieve and start
   the initramfs.
3) Once the initramfs is booted, the device will come up with IP
   192.168.1.1. You can then connect through SSH (allow some time for
   the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
   Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
   # fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
   and install it with sysupgrade. The device will reboot into OpenWRT.

Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.

Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
2020-12-22 20:55:40 +01:00
Marek Lindner
4871fd2616 ipq40xx: add support for Plasma Cloud PA2200
Device specifications:

* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
  - QCA9888 hw2.0 (PCI)
  - requires special BDF in QCA9888/hw2.0/board-2.bin
    bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio3:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio4:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3at POE+
    + used as WAN interface
* 12V 2A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Marek Lindner
ea5bb6bbfe ipq40xx: add support for Plasma Cloud PA1200
Device specifications:

* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio4:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio3:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3af/at POE(+)
    + used as WAN interface
* 12V/24V 1A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
8a891bfaa0 ipq40xx: Change name for openmesh.sh to vendor-free name
Other vendors are using functionality similar to the ones OpenMesh used to
implement two areas on the flash to store the default image and a fallback
image. So just change the name to dualboot_datachk.sh to avoid duplicated
code just to have the same script for different vendors.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Hans Geiblinger
a9071d02b5 ipq40xx: Add support for Linksys MR8300 (Dallas)
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.

Hardware Highlights:

SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM

SoC:	Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM:	512M DDR3
FLASH:	256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH:	Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN:	Reset and WPS
USB:	USB3.0, single port on rear with LED
SERIAL:	Serial pads internal (unpopulated)
LED:	Four status lights on top + USB LED
WIFI1:	2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2:  2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3:  2x2:2 QCA9888 5 GHz radio on ch. 100-165

Support is based on the already supported EA8300.
Key differences:
	EA8300 has 256MB RAM where MR8300 has 512MB RAM.
	MR8300 has a revised top panel LED setup.

Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)

Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-09-25 19:31:51 +02:00
Tomasz Maciej Nowak
e24635710c ipq40xx: add support for Luma Home WRTQ-329ACN
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.

Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
       128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
      5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
      of J19 marking on PCB
      1. GND, 2. RX, 3. TX, 4. 3.3V
      baud: 115200, parity: none, flow control: none

The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.

Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.

Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
   asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
     fw_setenv bootdelay 3
   This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
   'setenv' to do that, then run following commands:
     tftpboot 0x84000000 <openwrt_initramfs_image_name>
     bootm 0x84000000
   and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
     fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
     fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
    with:
     ubirmvol /dev/ubi0 -N ubi_rootfs
     sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
    ready for configuration.

Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
     ubirmvol /dev/ubi0 -N rootfs_data
     ubirmvol /dev/ubi0 -N rootfs
     ubirmvol /dev/ubi0 -N kernel
     ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
     ubimkvol /dev/ubi0 -S 34 -N kernel1
     ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
     ubimkvol /dev/ubi0 -S 264 -N rootfs_data
     fw_setenv bootcmd bootipq
3. Reboot.

Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
 i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.

Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
 sed -e 's/root/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:

Usage: led_ctl [status | upgrade | force_upgrade | version]
       led_ctl solid    COLOR <brightness>
       led_ctl single   COLOR INDEX <brightness 0 - 15>
       led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
       led_ctl fill     COLOR <period 1 - 16 (lower = faster)>
                                             ( default is 5 )
       led_ctl flashing COLOR <on dur 1 - 128>  <off dur 1 - 128>
                              (default is  34)  ( default is 34 )
       led_ctl pulsing  COLOR
COLOR: red, green, blue, yellow, purple, cyan, white

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-09-25 19:30:19 +02:00
Adrian Schmutzler
0b1cdb7eea treewide: remove empty default cases
There is no apparent reason to have an empty default case.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-17 12:46:19 +02:00
John Crispin
0fbdb51f76 ipq40xx: add Edgecore OAP-100 support
flashing the unit
* first update to latest edcore FW as per the PDF instructions
* boot the initramfs
  - tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm
* inside the initramfs call the following commiands
  - ubiattach -p /dev/mtd0
  - ubirmvol /dev/ubi0 -n0
  - ubirmvol /dev/ubi0 -n1
  - ubirmvol /dev/ubi0 -n2
* scp the sysupgrade image to the board and call
  - sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin

Signed-off-by: John Crispin <john@phrozen.org>
2020-09-17 08:43:07 +02:00
Robert Marko
4488b260a0 ipq40xx: add Edgecore ECW5211 support
This patch adds support for the Edgecore ECW5211 indoor AP.

Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM

Signed-off-by: Robert Marko <robert.marko@sartura.hr>
2020-09-17 08:43:03 +02:00
Yanase Yuki
4a77a060ab ipq40xx: add support for Buffalo WTR-M2133HP
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.

Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A

Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
   and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
    # ubidetach -p /dev/mtd15
    # ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
    # fw_setenv bootcmd bootipq
8. Perform reboot.

Recover to stock firmware
-------------------------
1. Execute the following command.
    # fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.

Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
2020-07-08 16:07:05 +02:00
Adrian Schmutzler
48c1fdd046 treewide: drop shebang from non-executable target files
This drops the shebang from all target files for /lib and
/etc/uci-defaults folders, as these are sourced and the shebang
is useless.

While at it, fix the executable flag on a few of these files.

This does not touch ar71xx, as this target is just used for
backporting now and applying cosmetic changes would just complicate
things.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-16 14:26:33 +02:00
David Bauer
300b7fe85a ipq40xx: add support for Aruba AP-365
Hardware
--------
SoC:   Qualcomm IPQ4029
RAM:   512M DDR3
FLASH: - 128MB NAND (Macronix MX30LF1G18AC)
       - 4MB SPI-NOR (Macronix MX25R3235F)
TPM:   Atmel AT97SC3203
BLE:   Texas Instruments CC2540T
       attached to ttyMSM0
ETH:   Atheros AR8035
LED:   System (red / green / amber)
BTN:   Reset

The USB port on the device is (in contrast to other Aruba boards) real
USB. The AP uses a CP2101 USB TTY converter on the board.

Console baudrate is 9600 8n1.

To enable a full list of commands in the U-Boot "help" command, execute
the literal "diag" command.

Installation
------------

1. Get the OpenWrt initramfs image. Rename it to ipq40xx.ari and put it
   into the TFTP server root directory. Configure the TFTP server to
   be reachable at 192.168.1.75/24. Connect the machine running the TFTP
   server to the ethernet port of the access point.

2. Connect to the serial console. Interrupt autobooting by pressing
   Enter when prompted.

3. Configure the bootargs and bootcmd for OpenWrt.
   $ setenv bootargs_openwrt "setenv bootargs console=ttyMSM1,9600n8"
   $ setenv nandboot_openwrt "run bootargs_openwrt; ubi part aos1;
     ubi read 0x85000000 kernel; bootm 0x85000000"
   $ setenv ramboot_openwrt "run bootargs_openwrt;
     setenv ipaddr 192.168.1.105; setenv serverip 192.168.1.75;
     netget; set fdt_high 0x87000000; bootm"
   $ setenv bootcmd "run nandboot_openwrt"
   $ saveenv

4. Load OpenWrt into RAM:
   $ run ramboot_openwrt

5. After OpenWrt booted, transfer the OpenWrt sysupgrade image to the
   /tmp folder on the device.

6. Flash OpenWrt:
   Make sure you use the mtd partition with the label "ubi" here!

   $ ubidetach -p /dev/mtd1
   $ ubiformat /dev/mtd1
   $ sysupgrade -n /tmp/openwrt-sysupgrade.bin

To go back to the stock firmware, simply reset the bootcmd in the
bootloader to the original value:

  $ setenv bootcmd "boot"
  $ saveenv

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-05-11 01:05:16 +02:00
Pawel Dembicki
c30220d458 ipq40xx: add support for Cell C RTL30VW
Cell C RTL30VW is a LTE router with tho gigabit ethernets and integrated
QMI mPCIE modem.

This is stripped version of ASKEY RTL0030VW.

Hardware:

Specification:
-CPU: IPQ4019
-RAM: 256MB
-Flash: NAND 128MB + NOR 16MB
-WiFi: Integrated bgn/ac
-LTE: mPCIe card (Modem chipset MDM9230)
-LAN: 2 Gigabit Ports
-USB: 2x USB2.0
-Serial console: RJ-45 115200 8n1
-Unsupported VoIP

Known issues:

None so far.

Instruction install:

There are two methods: Factory web-gui and serial + tftp.

Web-gui:
1. Apply factory image via stock web-gui.

Serial + initramfs:
1. Rename OpenWrt initramfs image to "image"
2. Connect serial console (115200,8n1)
3. Set IP to different than 192.168.1.11, but 24 bit mask, eg. 192.168.1.4.

4. U-Boot commands:
sf probe && sf read 0x80000000 0x180000 0x10000
setenv serverip 192.168.1.4
set fdt_high 0x85000000
tftpboot 0x84000000 image
bootm 0x84000000

5. Install sysupgrade image via "sysupgrade -n"

Back to stock:

All is needed is swap 0x4c byte in mtd8 from 0 to 1 or 1 to 0,
do firstboot and factory reset with OFW:

1. read mtd8:
dd if=/dev/mtd8 of=/tmp/mtd8
2. go to tmp:
cd /tmp/
3. write first part of partition:
dd if=mtd8 of=mtd8.new bs=1 count=76
4. check which layout uses bootloader:
cat /proc/mtd
5a. If first are kernel_1 and rootfs_1 write 0:
echo -n -e '\x00' >> mtd8.new
5b. If first are kernel and rootfs write 1:
echo -n -e '\x01' >> mtd8.new
6. fill with rest of data:
dd if=mtd8 bs=1 skip=77 >> mtd8.new
7. CHECK IF mtd8.new HAVE CHANGED ONLY ONE BYTE! e.g with:
hexdump mtd8.new
8. write new mtd8 to flash:
mtd write mtd8.new /dev/mtd8
9. do firstboot
10.reboot
11. Do back to factory defaults in OFW GUI.

Based on work: Cezary Jackiewicz <cezary@eko.one.pl>

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2020-04-10 15:22:26 +02:00
DENG Qingfang
a30abb1b6b ipq40xx: add support for MobiPromo CM520-79F
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019

Specification:

SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
      2 (USB, CAN) are GPIO
      other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset

Flash instruction:
Disassemble the router, connect UART pins like this:
 GND TX    RX
  [x x . . x .]
  [. . . . . .]

(QCA8075 and IPQ4019 below)
Baud-rate: 115200

Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
	printenv
	(Copy the output to somewhere save)
Set bootenv:
	setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
	setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
	setenv cm520_boot 'run set_ubi; run bootkernel'
	setenv bootcmd 'run cm520_boot'
	setenv bootargs
	saveenv
Boot initramfs from TFTP:
	tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
	bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
	cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP

Upload nand-factory.ubi to /tmp via SCP, then run
	mtd erase rootfs
	mtd write /tmp/*nand-factory.ubi rootfs
	reboot

To revert to stock image, restore default bootenv in uboot UART console
	setenv bootcmd 'bootipq'
	printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
	saveenv
upload the backed up mtd12.bin and run
	tftpboot mtd12.bin
	nand erase 0xb80000 0x7480000
	nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
	cd /tmp
	cat /dev/mtd7 > mtd7.bin
	echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
	for i in 28 48 68 108; do
		dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
	done
	mtd write mtd7.bin BOOTCONFIG
	mtd write mtd7.bin BOOTCONFIG1

Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-04-10 15:22:26 +02:00
Steven Lin
a736d912e2 ipq40xx: add support for EnGenius EAP2200
SOC:    IPQ4019 / QCA Dakota
CPU:    Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM:   256 MiB
FLASH:  NOR 4 MiB + NAND 128 MiB
ETH:    Qualcomm Atheros QCA8072
WLAN1:  Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2:  Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2:  Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT:  WPS Button
LEDS:   Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE

1. Load Ramdisk via U-Boot

To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
   * 115200bps
   * 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.

U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm

Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-02-28 22:29:10 +01:00
David Bauer
c6e972c877 ipq40xx: add support for Aruba AP-303H
The Aruba AP-303H is the hospitality version of the Aruba AP-303 with a
POE-passthrough enabled ethernet switch instead of a sigle PHY.

Hardware
--------

SoC:   Qualcomm IPQ4029
RAM:   512M DDR3
FLASH: - 128MB SPI-NAND (Macronix)
       - 4MB SPI-NOR (Macronix MX25R3235F)
TPM:   Atmel AT97SC3203
BLE:   Texas Instruments CC2540T
       attached to ttyMSM1
ETH:   Qualcomm QCA8075
LED:   WiFi (amber / green)
       System (red / green /amber)
       PSE (green)
BTN:   Reset
USB:   USB 2.0

To connect to the serial console, you can solder to the labled pads next
to the USB port or use your Aruba supplied UARt adapter.

Do NOT plug a standard USB cable into the Console labled USB-port!
Aruba/HPE simply put UART on the micro-USB pins. You can solder yourself
an adapter cable:

VCC - NC
 D+ - TX
 D- - RX
GND - GND

The console setting in bootloader and OS is 9600 8N1. Voltage level is
3.3V.

To enable a full list of commands in the U-Boot "help" command, execute
the literal "diag" command.

Installation
------------

1. Get the OpenWrt initramfs image. Rename it to ipq40xx.ari and put it
   into the TFTP server root directory. Configure the TFTP server to
   be reachable at 192.168.1.75/24. Connect the machine running the TFTP
   server to the E0 (!) ethernet port of the access point, as it only
   tries to pull from the WAN port.

2. Connect to the serial console. Interrupt autobooting by pressing
   Enter when prompted.

3. Configure the bootargs and bootcmd for OpenWrt.
   $ setenv bootargs_openwrt "setenv bootargs console=ttyMSM0,9600n8"
   $ setenv nandboot_openwrt "run bootargs_openwrt; ubi part aos1;
     ubi read 0x85000000 kernel; set fdt_high 0x87000000;
     bootm 0x85000000"
   $ setenv ramboot_openwrt "run bootargs_openwrt;
     setenv ipaddr 192.168.1.105; setenv serverip 192.168.1.75;
     netget; set fdt_high 0x87000000; bootm"
   $ setenv bootcmd "run nandboot_openwrt"
   $ saveenv

4. Load OpenWrt into RAM:
   $ run ramboot_openwrt

5. After OpenWrt booted, transfer the OpenWrt sysupgrade image to the
   /tmp folder on the device. You will need to plug into E1-E3 ports of
   the access point to reach OpenWrt, as E0 is the WAN port of the
   device.

6. Flash OpenWrt:
   $ ubidetach -p /dev/mtd16
   $ ubiformat /dev/mtd16
   $ sysupgrade -n /tmp/openwrt-sysupgrade.bin

To go back to the stock firmware, simply reset the bootcmd in the
bootloader to the original value:

  $ setenv bootcmd "boot"
  $ saveenv

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-01-14 09:38:32 +01:00
Tom Brouwer
2090b8af0a ipq40xx: add support for EZVIZ CS-W3-WD1200G EUP
Hardware:
SOC:    Qualcomm IPQ4018
RAM:	128 MB Nanya NT5CC64M16GP-DI
FLASH:  16 MB Macronix MX25L12805D
ETH:    Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN)
WLAN:   Qualcomm IPQ4018 (2.4 & 5 Ghz)
BUTTON: Shared WPS/Reset button
LED:    RGB Status/Power LED
SERIAL: Header J8 (UART, Left side of board). Numbered from
        top to bottom:
        (1) GND, (2) TX, (3) RX, (4) VCC (White triangle
        next to it).
        3.3v, 115200, 8N1

Tested/Working:
* Ethernet
* WiFi (2.4 and 5GHz)
* Status LED
* Reset Button (See note below)

Implementation notes:
* The shared WPS/Reset button is implemented as a Reset button
* I could not find a original firmware image to reverse engineer, meaning
currently it's not possible to flash OpenWrt through the Web GUI.

Installation (Through Serial console & TFTP):
1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to
one of the LAN ports
2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on
your pc, to serve the image
2. Connect to the router through serial (See connection properties above)
3. Hit a key during startup, to pause startup
4. type `setenv serverip 192.168.1.12`, to set the tftp server address
5. type `tftpboot`, to load the image from the laptop through tftp
6. type `bootm` to run the loaded image from memory
6. (If you want to return to stock firmware later, create an full MTD backup,
e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup)
7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.:
`scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin`
8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin`

Revert to stock:
To revert to stock, you need the MTD backup from step 6 above:
1. Unpack the MTD backup archive
2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup)
3. On the router, do `mtd write mtd8_firmware.backup firmware`

Signed-off-by: Tom Brouwer <tombrouwer@outlook.com>
[removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2020-01-12 15:57:58 +01:00
David Bauer
102c8c55f2 ipq40xx: add support for Aruba AP-303
Hardware
--------

SoC:   Qualcomm IPQ4029
RAM:   512M DDR3
FLASH: - 128MB NAND (Macronix MX30LF1G18AC)
       - 4MB SPI-NOR (Macronix MX25R3235F)
TPM:   Atmel AT97SC3203
BLE:   Texas Instruments CC2540T
       attached to ttyMSM0
ETH:   Atheros AR8035
LED:   WiFi (amber / green)
       System (red / green)
BTN:   Reset

To connect to the serial console, you can solder to the labled pads next
to the USB port or use your Aruba supplied UARt adapter.

Do NOT plug a standard USB cable into the Console labled USB-port!
Aruba/HPE simply put UART on the micro-USB pins. You can solder yourself
an adapter cable:

VCC - NC
 D+ - TX
 D- - RX
GND - GND

The console setting in bootloader and OS is 9600 8N1. Voltage level is
3.3V.

To enable a full list of commands in the U-Boot "help" command, execute
the literal "diag" command.

Installation
------------

1. Get the OpenWrt initramfs image. Rename it to ipq40xx.ari and put it
   into the TFTP server root directory. Configure the TFTP server to
   be reachable at 192.168.1.75/24. Connect the machine running the TFTP
   server to the ethernet port of the access point.

2. Connect to the serial console. Interrupt autobooting by pressing
   Enter when prompted.

3. Configure the bootargs and bootcmd for OpenWrt.
   $ setenv bootargs_openwrt "setenv bootargs console=ttyMSM1,9600n8"
   $ setenv nandboot_openwrt "run bootargs_openwrt; ubi part aos1;
     ubi read 0x85000000 kernel; bootm 0x85000000"
   $ setenv ramboot_openwrt "run bootargs_openwrt;
     setenv ipaddr 192.168.1.105; setenv serverip 192.168.1.75;
     netget; set fdt_high 0x87000000; bootm"
   $ setenv bootcmd "run nandboot_openwrt"
   $ saveenv

4. Load OpenWrt into RAM:
   $ run ramboot_openwrt

5. After OpenWrt booted, transfer the OpenWrt sysupgrade image to the
   /tmp folder on the device.

6. Flash OpenWrt:
   $ ubidetach -p /dev/mtd1
   $ ubiformat /dev/mtd1
   $ sysupgrade -n /tmp/openwrt-sysupgrade.bin

To go back to the stock firmware, simply reset the bootcmd in the
bootloader to the original value:

  $ setenv bootcmd "boot"
  $ saveenv

Signed-off-by: David Bauer <mail@david-bauer.net>
2019-12-20 17:48:52 +01:00
Robert Marko
146eb4925c ipq40xx: add support for Crisis Innovation Lab MeshPoint.One
MeshPoint.One is Wi-Fi hotspot and smart IoT gateway (based upon
Jalapeno module from 8Devices).

MeshPoint.One (https://meshpointone.com) is a unique Wi-Fi hotspot and
smart city gateway that can be installed and powered from street
lighting (even solar power in the future).  MeshPoint provides up to 27
hours of interrupted Wi-Fi and IoT services from internal battery even
when external power is not available.  MeshPoint.One can be used for
disaster relief efforts in order to provide instant Wi-Fi coverage that
can be easily expanded by just adding more devices that create wide area
mesh network.  MeshPoint.One devices have standard Luci UI for
management.

Features:
- 1x 1Gpbs WAN
- 1x 1Gbps LAN
- POE input (eth0)
- POE output (eth1)
- Sensor for temperature, humidity and pressure (Bosch BME280)
- current, voltage and power measurement via TI INA230
- Hardware real time clock
- optional power via Li-Ion battery
- micro USB port with USB to serial chip for easy OpenWrt terminal
  access
- I2C header for connecting additional sensors

Installation:
-------------
Simply flash the sysupgrade image from stock firmware.

Or use the built in Web recovery into bootloader:
Hold Reset button for 5 to 20 seconds or use UART and httpd command.
Web UI will appear on 192.168.2.100 by default.
For web recovery use the factory.ubi image.

Signed-off-by: Damir Samardzic <damir.samardzic@sartura.hr>
Signed-off-by: Damir Franusic <damir.franusic@sartura.hr>
Signed-off-by: Valent Turkovic <valent@meshpoint.me>
Signed-off-by: Robert Marko <robert@meshpoint.me>
[commit description long line wrap, usb->USB]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2019-11-30 00:53:36 +01:00
Daniel Danzberger
affe633be4 ipq40xx: ipq4019: Add new device Compex WPJ419
This device contains 2 flash devices. One NOR (32M) and one NAND (128M).
U-boot and caldata are on the NOR, the firmware on the NAND.

    SoC:    IPQ4019
    CPU:    4x 710MHz ARMv7
    RAM:    256MB
    FLASH:  NOR:32MB NAND:128MB
    ETH:    2x GMAC Gigabit
    POE:    802.3 af/at POE, IEEE802.3af/IEEE802.3at(48-56V)
    WIFI:   1x 2.4Ghz Atheros qca4019 2x2 MU-MIMO
            1x 5.0Ghz Atheros qca4019 2x2 MU-MIMO
    USB:    1x 3.0
    PCI:    1x Mini PCIe
    SIM:    1x Slot
    SD:     1x MicroSD slot
    BTN:    Reset
    LED:    - Power
            - Ethernet
    UART:  1x Serial Port 4 Pin Connector (UART)
           1x Serial Port 6 Pin Connector (High Speed UART)
    POWER: 12V 2A

Installation
------------
Initial flashing can only be done via u-boot using the following commands:

tftpboot openwrt-ipq40xx-generic-compex_wpj419-squashfs-nand-factory.ubi
nand erase.chip; nand write ${fileaddr} 0x0 ${filesize}
res

Signed-off-by: Daniel Danzberger <daniel@dd-wrt.com>
2019-11-02 19:25:15 +01:00
David Bauer
7f187229a8 ipq40xx: add support for AVM FRITZ!Repeater 1200
Hardware
--------
SoC:   Qualcomm IPQ4019
RAM:   256M DDR3
FLASH: 128M NAND
WiFi:  2T2R IPQ4019 bgn
       2T2R IPQ4019 a/n/ac
ETH:   Atheros AR8033 RGMII PHY
BTN:   1x Connect (WPS)
LED:   Power (green/red/yellow)

Installation
------------

1. Grab the uboot for the Device from the 'u-boot-fritz1200'
   subdirectory. Place it in the same directory as the 'eva_ramboot.py'
   script. It is located in the 'scripts/flashing' subdirectory of the
   OpenWRT tree.

2. Assign yourself the IP address 192.168.178.10/24. Connect your
   Computer to one of the boxes LAN ports.

3. Connect Power to the Box. As soon as the LAN port of your computer
   shows link, load the U-Boot to the box using following command.

   > ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz1200.bin

4. The U-Boot will now start. Now assign yourself the IP address
   192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP
   server root directory and rename it to 'FRITZ1200.bin'.

5. The Box will now boot OpenWRT from RAM. This can take up to two
   minutes.

6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using
   scp. SSH into the Box and first write the Bootloader to both previous
   kernel partitions.

   > mtd write /path/to/uboot-fritz1200.bin uboot0
   > mtd write /path/to/uboot-fritz1200.bin uboot1

7. Remove the AVM filesystem partitions to make room for our kernel +
   rootfs + overlayfs.

   > ubirmvol /dev/ubi0 --name=avm_filesys_0
   > ubirmvol /dev/ubi0 --name=avm_filesys_1

8. Flash OpenWRT peristently using sysupgrade.

   > sysupgrade -n /path/to/openwrt-sysupgrade.bin

Signed-off-by: David Bauer <mail@david-bauer.net>
2019-10-23 01:17:28 +02:00
Rafał Miłecki
a858db3136 treewide: sysupgrade: use $UPGRADE_BACKUP to check for backup
Now that $UPGRADE_BACKUP is set conditionally there is no need to check
the $UPGRADE_OPT_SAVE_CONFIG anymore. All conditions can be simplified.

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2019-09-11 09:05:35 +02:00
Rafał Miłecki
641f6b6c26 treewide: use new procd sysupgrade $UPGRADE_BACKUP variable
It's a variable set by procd that should replace hardcoded
/tmp/sysupgrade.tgz.

This change requires the most recent procd with the commit 0f3c136
("sysupgrade: set UPGRADE_BACKUP env variable").

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2019-09-05 23:33:19 +02:00
Rafał Miłecki
5797fe84a3 treewide: replace remaining (not working now) $SAVE_CONFIG uses
This var has been replaced by the $UPGRADE_OPT_UPGRADE_OPT_SAVE_CONFIG

Fixes: b534ba9611 ("base-files: pass "save_config" option to the "sysupgrade" method")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2019-09-05 08:43:24 +02:00
Adrian Schmutzler
75bfc393ba treewide: convert MAC address location offsets to hexadecimal
This changes the offsets for the MAC address location in
mtd_get_mac_binary* and mtd_get_mac_text to hexadecimal notation.

This will be much clearer for the reader when numbers are big, and
will also match the style used for mtd-mac-address in DTS files.

(e.g. 0x1006 and 0x5006 are much more useful than 4102 and 20486)

Acked-by: Alexander Couzens <lynxis@fe80.eu>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-08-14 12:10:12 +02:00
Rafał Miłecki
1cbe0d659c treewide: sysupgrade: get rid of platform_nand_pre_upgrade()
1) nand_do_upgrade() is always called by a target code
2) nand_do_upgrade() starts with calling platform_nand_pre_upgrade()

It means there is no need for the platform_nand_pre_upgrade() callback
at all. All code that was present there could bo moved & simplly called
by a target right before the nand_do_upgrade().

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2019-07-22 14:27:37 +02:00
Rafał Miłecki
8b4bc7abe0 treewide: sysupgrade: don't use $ARGV in platform_do_upgrade()
stage2 passes image path to platform_do_upgrade() as an argument so it
can be simply accessed using $1

Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
2019-07-17 08:05:38 +02:00
Jeff Kletsky
1440175f82 ipq40xx: Linksys: sysupgrade: Ensure OEM volumes are removed
When OEM volumes are present in the [alt_]firmware partition,
sysupgrade will write a new kernel, but will fail to write
the root file system. The next boot will hang indefinitely

    Waiting for root device /dev/ubiblock0_0...

Modified ipq40xx/base-files/lib/upgrade/linksys.sh
to remove both `squashfs` and `ubifs` if found
on the target firmware partition's UBI device.

Run-tested-on: Linksys EA8300

Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[applied some shellcheck suggestions as well]
2019-06-20 20:02:29 +02:00