openwrt/target/linux/ramips/image/mt76x8.mk

241 lines
6.2 KiB
Makefile
Raw Normal View History

#
# MT76x8 Profiles
#
define Device/tplink
TPLINK_FLASHLAYOUT :=
TPLINK_HWID :=
TPLINK_HWREV :=
TPLINK_HWREVADD :=
TPLINK_HVERSION :=
KERNEL := $(KERNEL_DTB)
KERNEL_INITRAMFS := $(KERNEL_DTB) | tplink-v2-header -e
IMAGES += tftp-recovery.bin
IMAGE/factory.bin := tplink-v2-image -e
IMAGE/tftp-recovery.bin := pad-extra 128k | $$(IMAGE/factory.bin)
IMAGE/sysupgrade.bin := tplink-v2-image -s -e | append-metadata | \
check-size $$$$(IMAGE_SIZE)
endef
DEVICE_VARS += TPLINK_FLASHLAYOUT TPLINK_HWID TPLINK_HWREV TPLINK_HWREVADD TPLINK_HVERSION
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
define Device/duzun-dm06
DTS := DUZUN-DM06
DEVICE_TITLE := DuZun DM06
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
TARGET_DEVICES += duzun-dm06
define Device/gl-mt300n-v2
DTS := GL-MT300N-V2
IMAGE_SIZE := 16064k
DEVICE_TITLE := GL-iNet GL-MT300N-V2
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci
endef
TARGET_DEVICES += gl-mt300n-v2
define Device/hc5661a
DTS := HC5661A
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := HiWiFi HC5661A
endef
TARGET_DEVICES += hc5661a
define Device/LinkIt7688
DTS := LINKIT7688
IMAGE_SIZE := $(ralink_default_fw_size_32M)
SUPPORTED_DEVICES := linkits7688 linkits7688d
DEVICE_TITLE := MediaTek LinkIt Smart 7688
DEVICE_PACKAGES:= kmod-usb2 kmod-usb-ohci uboot-envtools
endef
TARGET_DEVICES += LinkIt7688
define Device/mac1200r-v2
DTS := MAC1200RV2
DEVICE_TITLE := Mercury MAC1200R v2.0
SUPPORTED_DEVICES := mac1200rv2
endef
TARGET_DEVICES += mac1200r-v2
define Device/miwifi-nano
DTS := MIWIFI-NANO
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := Xiaomi MiWiFi Nano
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
TARGET_DEVICES += miwifi-nano
define Device/mt7628
DTS := MT7628
BLOCKSIZE := 64k
IMAGE_SIZE := $(ralink_default_fw_size_4M)
DEVICE_TITLE := MediaTek MT7628 EVB
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
define Device/omega2
DTS := OMEGA2
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := Onion Omega2
DEVICE_PACKAGES:= kmod-usb2 kmod-usb-ohci uboot-envtools
endef
TARGET_DEVICES += omega2
define Device/omega2p
DTS := OMEGA2P
IMAGE_SIZE := $(ralink_default_fw_size_32M)
DEVICE_TITLE := Onion Omega2+
DEVICE_PACKAGES:= kmod-usb2 kmod-usb-ohci uboot-envtools kmod-sdhci-mt7620
endef
TARGET_DEVICES += omega2p
define Device/pbr-d1
DTS := PBR-D1
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := PBR-D1
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci
endef
TARGET_DEVICES += pbr-d1
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
define Device/tl-wr840n-v4
$(Device/tplink)
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
DTS := TL-WR840NV4
IMAGE_SIZE := 7808k
DEVICE_TITLE := TP-Link TL-WR840N v4
TPLINK_FLASHLAYOUT := 8Mmtk
TPLINK_HWID := 0x08400004
TPLINK_HWREV := 0x1
TPLINK_HWREVADD := 0x4
TPLINK_HVERSION := 3
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
endef
TARGET_DEVICES += tl-wr840n-v4
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
ramips: add support for TP-Link TL-WR840N v5 TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 4 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 1x LED (GPIO-controlled), 1x button * LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Orange LED is registered so you can later use it for your own purposes. Flash instruction: Unlike TL-WR840N v4 flashing through WEB UI works in v5. 1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image. 2. Go to 192.168.0.1 3. Flash the sysupgrade image through Firmware upgrade section of WEB UI. 4. Wait until green LED stops flashing and use the router. Notes: TFTP recovery is broken since TP-Link reused bootloader code for v4 and that does not take into account only 4 MB of flash and bricks the device. So do not use TFTP Recovery or you will have to rewrite SPI flash. They fixed it in later GPL code,but it is unknown which version of bootloader you have. After manually compiling and flashing bootloader from GPL sources TFTP recovery works properly. Signed-off-by: Robert Marko <robimarko@gmail.com>
2017-11-08 13:00:06 +00:00
define Device/tl-wr840n-v5
DTS := TL-WR840NV5
IMAGE_SIZE := 3904k
ramips: add support for TP-Link TL-WR840N v5 TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 4 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 1x LED (GPIO-controlled), 1x button * LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Orange LED is registered so you can later use it for your own purposes. Flash instruction: Unlike TL-WR840N v4 flashing through WEB UI works in v5. 1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image. 2. Go to 192.168.0.1 3. Flash the sysupgrade image through Firmware upgrade section of WEB UI. 4. Wait until green LED stops flashing and use the router. Notes: TFTP recovery is broken since TP-Link reused bootloader code for v4 and that does not take into account only 4 MB of flash and bricks the device. So do not use TFTP Recovery or you will have to rewrite SPI flash. They fixed it in later GPL code,but it is unknown which version of bootloader you have. After manually compiling and flashing bootloader from GPL sources TFTP recovery works properly. Signed-off-by: Robert Marko <robimarko@gmail.com>
2017-11-08 13:00:06 +00:00
DEVICE_TITLE := TP-Link TL-WR840N v5
TPLINK_FLASHLAYOUT := 4Mmtk
TPLINK_HWID := 0x08400005
TPLINK_HWREV := 0x1
TPLINK_HWREVADD := 0x5
TPLINK_HVERSION := 3
KERNEL := $(KERNEL_DTB)
KERNEL_INITRAMFS := $(KERNEL_DTB) | tplink-v2-header -e
IMAGE/sysupgrade.bin := tplink-v2-image -s -e | append-metadata | \
check-size $$$$(IMAGE_SIZE)
endef
TARGET_DEVICES += tl-wr840n-v5
ramips: add support for TP-Link TL-WR840N v5 TP-Link TL-WR840N v5 is simple N300 router with 5-port FE switch and non-detachable antennas, based on MediaTek MT7628NN (aka MT7628N) WiSoC. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 4 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - 1x LED (GPIO-controlled), 1x button * LED in TL-WR840N v5 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Orange LED is registered so you can later use it for your own purposes. Flash instruction: Unlike TL-WR840N v4 flashing through WEB UI works in v5. 1. Download lede-ramips-mt76x8-tl-wr840n-v5-squashfs-sysupgrade.bin image. 2. Go to 192.168.0.1 3. Flash the sysupgrade image through Firmware upgrade section of WEB UI. 4. Wait until green LED stops flashing and use the router. Notes: TFTP recovery is broken since TP-Link reused bootloader code for v4 and that does not take into account only 4 MB of flash and bricks the device. So do not use TFTP Recovery or you will have to rewrite SPI flash. They fixed it in later GPL code,but it is unknown which version of bootloader you have. After manually compiling and flashing bootloader from GPL sources TFTP recovery works properly. Signed-off-by: Robert Marko <robimarko@gmail.com>
2017-11-08 13:00:06 +00:00
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
define Device/tl-wr841n-v13
$(Device/tplink)
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
DTS := TL-WR841NV13
IMAGE_SIZE := 7808k
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
DEVICE_TITLE := TP-Link TL-WR841N v13
TPLINK_FLASHLAYOUT := 8Mmtk
TPLINK_HWID := 0x08410013
TPLINK_HWREV := 0x268
TPLINK_HWREVADD := 0x13
TPLINK_HVERSION := 3
ramips: add support for TP-Link TL-WR840N v4 and TL-WR841N v13 TP-Link TL-WR840N v4 and TL-WR841N v13 are simple N300 routers with 5-port FE switch and non-detachable antennas. Both are very similar and are based on MediaTek MT7628NN (aka MT7628N) WiSoC. The difference between these two models is in number of available LEDs, buttons and power input switch. This work is partially based on GitHub PR#974. Specification: - MT7628N/N (580 MHz) - 64 MB of RAM (DDR2) - 8 MB of FLASH - 2T2R 2.4 GHz - 5x 10/100 Mbps Ethernet - 2x external, non-detachable antennas - UART (J1) header on PCB (115200 8n1) - TL-WR840N v4: 5x LED (GPIO-controlled), 1x button - TL-WR841N v13: 8x LED (GPIO-controlled*), 2x button, power input switch * WAN LED in TL-WR841N v13 is a dual-color, dual-leads type which isn't (fully) supported by gpio-leds driver. This type of LED requires both GPIOs state change at the same time to select color or turn it off. For now, we support/use only the green part of the LED. Factory image notes: These devices use version 3 of TP-Link header, fortunately without RSA signature (at least in case of devices sold in Europe). The difference lays in the requirement for a non-zero value in "Additional Hardware Version" field. Ideally, it should match the value stored in vendor firmware header on device ("0x4"/"0x13" for these devices) but it seems that anything other than "0" is correct. We are able to prepare factory firwmare file which is accepted and (almost) correctly flashed from the vendor GUI. As it turned out, it accepts files without U-Boot image with second header at the beginning but due to some kind of bug in upgrade routine, flashed image gets corrupted before it's written to flash. Tests showed that the GUI upgrade routine copies value of "Additional Hardware Version" from existing firmware into offset "0x2023c" in provided file, _before_ storing it in flash. In case of vendor firmware upgrade files (which all include U-Boot image and two headers), this offset points to the matching field in kernel+rootfs firmware part header. Unfortunately, in case of LEDE factory image file which contains only one header, it points to the offset "0x2023c" in kernel image. This leads to a corrupted kernel and ends up with a "soft-bricked" device. The good news is that U-Boot in these devices contains well known tftp recovery mode, which can be triggered with "reset" button. What's more, in comparison to some of older MediaTek based TP-Link devices, this recovery mode doesn't write whole file at offset "0x0" in flash, without verifying provided file in advance. In case of recovery mode in these devices, first "0x20000" bytes are always skipped and "0x7a0000" bytes from rest of the file are stored in flash at offset "0x20000". Flash instruction: Until (if at all) TP-Link fixes described problem, the only way to flash LEDE image in these devices is to use tftp recovery mode in U-Boot: 1. Configure PC with static IP 192.168.0.66/24 and tftp server. 2. Rename "lede-ramips-mt7628-tl-wr84...-squashfs-tftp-recovery.bin" to "tp_recovery.bin" and place it in tftp server directory. 3. Connect PC with one of LAN ports, press the reset button, power up the router and keep button pressed for around 6-7 seconds, until device starts downloading the file. 4. Router will download file from server, write it to flash and reboot. To access U-Boot CLI, keep pressed "4" key during boot. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2017-06-21 12:16:15 +00:00
endef
TARGET_DEVICES += tl-wr841n-v13
define Device/tplink_c20-v4
$(Device/tplink)
DTS := ArcherC20v4
IMAGE_SIZE := 7808k
DEVICE_TITLE := TP-Link ArcherC20 v4
TPLINK_FLASHLAYOUT := 8Mmtk
TPLINK_HWID := 0xc200004
TPLINK_HWREV := 0x1
TPLINK_HWREVADD := 0x4
TPLINK_HVERSION := 3
endef
TARGET_DEVICES += tplink_c20-v4
define Device/tplink_tl-mr3420-v5
$(Device/tplink)
DTS := TL-MR3420V5
IMAGE_SIZE := 7808k
DEVICE_TITLE := TP-Link TL-MR3420 v5
TPLINK_FLASHLAYOUT := 8Mmtk
TPLINK_HWID := 0x34200005
TPLINK_HWREV := 0x5
TPLINK_HWREVADD := 0x5
TPLINK_HVERSION := 3
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
TARGET_DEVICES += tplink_tl-mr3420-v5
ramips: add support for UniElec U7628-01 UniElec U7628-01 is a router platform board based on MediaTek MT7628AN. The device has the following specifications: - MT7628AN (580MHz) - 64/128/256 MB of RAM (DDR2) - 8/16 MB of flash (SPI NOR) - 5x 10/100 Mbps Ethernet (MT7628 built-in switch) - 1x 2T2R 2.4 GHz Wi-Fi (MT7628) - 1x miniPCIe slot (with PCIe and USB 2.0 buses) - 1x miniSIM slot - 1x microSD slot - 1x USB 2.0 port - 7x single-color LEDs (GPIO-controlled) - 1x bi-color LED (green GPIO-controlled, red -> LED_WLAN# in miniPCIe) - 1x reset button - 1x UART header (4-pins) - 1x SDXC/GPIO header (10-pins, connected with microSD slot) - 1x DC jack for main power (12 V) The following has been tested and is working: - Ethernet switch - miniPCIe slot (tested with modem and Wi-Fi card) - miniSIM slot - sysupgrade - reset button - USB 2.0 port* Due to a missing driver (MMC over GPIO) this is not supported: - microSD card reader * Warning: USB buses in miniPCIe and regular A-type socket are connected together, without any proper analog switch or USB HUB. Installation: This board might come with a different firmware versions (MediaTek SDK, PandoraBox, Padavan, etc.). If your board comes with PandoraBox, you can install LEDE using sysupgrade. Just SSH to the router and perform forced sysupgrade (due to a board name mismatch). The default IP of this board should be: 192.168.1.1 and username/password: root/admin. In case of a different firmware, you can use web based recovery described below. Use the following command to perform the sysupgrade (for the 128MB RAM/16MB flash version): sysupgrade -n -F lede-ramips-mt76x8-u7628-01-128M-16M-squashfs-sysupgrade.bin Recovery: This board contains a Chinese, closed-source bootloader called Breed (Boot and Recovery Environment for Embedded Devices). Breed supports web recovery and to enter it, you keep the reset button pressed for around 5 seconds during boot. Your machine will be assigned an IP through DHCP and the router will use IP address 192.168.1.1. The recovery website is in Chinese, but is easy to use. Click on the second item in the list to access the recovery page, then the second item on the next page is where you select the firmware. In order to start the recovery, you click the button at the bottom. SDXC/GPIO header (J3): 1. SDXC_D3 / I2C_SCLK 2. SDXC_D2 / I2C_SD 3. SDXC_D1 / I2S_DI 4. SDXC_D0 / I2S_WS 5. SDXC_CMD / I2S_CLK 6. SDXC_CLK / GPIO0 7. SDXC_CD / UART_RXD1 8. UART_TXD1 9. 3V3 10. GND Other notes: 1. The board is available with different amounts of RAM and flash. We have only added support for the 128/16 MB configuration, as that seems to be the default. However, all the required infrastructure is in place for making support for the other configurations easy. Signed-off-by: Piotr Dymacz <pepe2k@gmail.com> Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
2017-11-03 20:12:49 +00:00
define Device/u7628-01-128M-16M
DTS := U7628-01-128M-16M
IMAGE_SIZE := 16064k
DEVICE_TITLE := UniElec U7628-01 (128M RAM/16M flash)
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
TARGET_DEVICES += u7628-01-128M-16M
define Device/vocore2
DTS := VOCORE2
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := VoCore VoCore2
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport \
kmod-sdhci-mt7620
endef
TARGET_DEVICES += vocore2
define Device/vocore2lite
DTS := VOCORE2LITE
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := VoCore VoCore2-Lite
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport \
kmod-sdhci-mt7620
endef
TARGET_DEVICES += vocore2lite
define Device/wcr-1166ds
DTS := WCR-1166DS
BUFFALO_TAG_PLATFORM := MTK
BUFFALO_TAG_VERSION := 9.99
BUFFALO_TAG_MINOR := 9.99
IMAGES += factory.bin
IMAGE/sysupgrade.bin := trx | pad-rootfs | append-metadata
IMAGE/factory.bin := \
trx -M 0x746f435c | pad-rootfs | append-metadata | \
buffalo-enc WCR-1166DS $$(BUFFALO_TAG_VERSION) -l | \
buffalo-tag-dhp WCR-1166DS JP JP | buffalo-enc-tag -l | \
buffalo-dhp-image
DEVICE_TITLE := Buffalo WCR-1166DS
endef
TARGET_DEVICES += wcr-1166ds
define Device/wl-wn575a3
DTS := WL-WN575A3
IMAGE_SIZE := $(ralink_default_fw_size_8M)
DEVICE_TITLE := Wavlink WL-WN575A3
endef
TARGET_DEVICES += wl-wn575a3
define Device/widora-neo
DTS := WIDORA-NEO
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := Widora-NEO
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci
endef
TARGET_DEVICES += widora-neo
define Device/wrtnode2p
DTS := WRTNODE2P
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := WRTnode 2P
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci kmod-usb-ledtrig-usbport
endef
TARGET_DEVICES += wrtnode2p
define Device/wrtnode2r
DTS := WRTNODE2R
IMAGE_SIZE := $(ralink_default_fw_size_16M)
DEVICE_TITLE := WRTnode 2R
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ohci
endef
TARGET_DEVICES += wrtnode2r