2022-01-31 04:21:47 +00:00
|
|
|
define Build/dongwon-header
|
|
|
|
head -c 4 $@ > $@.tmp
|
|
|
|
head -c 8 /dev/zero >> $@.tmp
|
|
|
|
tail -c +9 $@ >> $@.tmp
|
2021-10-01 05:53:06 +00:00
|
|
|
( \
|
|
|
|
header_crc="$$(head -c 68 $@.tmp | gzip -c | \
|
|
|
|
tail -c 8 | od -An -N4 -tx4 --endian little | tr -d ' \n')"; \
|
|
|
|
printf "$$(echo $$header_crc | sed 's/../\\x&/g')" | \
|
|
|
|
dd of=$@.tmp bs=4 count=1 seek=1 conv=notrunc \
|
|
|
|
)
|
|
|
|
mv $@.tmp $@
|
|
|
|
endef
|
|
|
|
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
# attention: only zlib compression is allowed for the boot fs
|
2019-10-27 23:30:51 +00:00
|
|
|
define Build/zyxel-buildkerneljffs
|
2021-09-17 19:48:55 +00:00
|
|
|
mkdir -p $@.tmp/boot
|
|
|
|
cp $@ $@.tmp/boot/vmlinux.lzma.uImage
|
2019-10-27 23:30:51 +00:00
|
|
|
$(STAGING_DIR_HOST)/bin/mkfs.jffs2 \
|
|
|
|
--big-endian --squash-uids -v -e 128KiB -q -f -n -x lzma -x rtime \
|
|
|
|
-o $@ \
|
2021-09-17 19:48:55 +00:00
|
|
|
-d $@.tmp
|
|
|
|
rm -rf $@.tmp
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
endef
|
|
|
|
|
|
|
|
define Build/zyxel-factory
|
|
|
|
let \
|
|
|
|
maxsize="$(subst k,* 1024,$(RAS_ROOTFS_SIZE))"; \
|
|
|
|
let size="$$(stat -c%s $@)"; \
|
|
|
|
if [ $$size -lt $$maxsize ]; then \
|
|
|
|
$(STAGING_DIR_HOST)/bin/mkrasimage \
|
|
|
|
-b $(RAS_BOARD) \
|
|
|
|
-v $(RAS_VERSION) \
|
|
|
|
-r $@ \
|
|
|
|
-s $$maxsize \
|
|
|
|
-o $@.new \
|
|
|
|
-l 131072 \
|
|
|
|
&& mv $@.new $@ ; \
|
|
|
|
fi
|
|
|
|
endef
|
|
|
|
|
2020-06-26 08:16:00 +00:00
|
|
|
define Device/8dev_rambutan
|
|
|
|
SOC := qca9557
|
|
|
|
DEVICE_VENDOR := 8devices
|
|
|
|
DEVICE_MODEL := Rambutan
|
|
|
|
DEVICE_PACKAGES := kmod-usb2
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
KERNEL_IN_UBI := 1
|
|
|
|
IMAGES := factory.bin sysupgrade.tar
|
|
|
|
IMAGE/sysupgrade.tar := sysupgrade-tar | append-metadata
|
|
|
|
IMAGE/factory.bin := append-ubi
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += 8dev_rambutan
|
|
|
|
|
2019-10-27 14:49:18 +00:00
|
|
|
define Device/aerohive_hiveap-121
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := ar9344
|
2019-10-27 14:49:18 +00:00
|
|
|
DEVICE_VENDOR := Aerohive
|
|
|
|
DEVICE_MODEL := HiveAP 121
|
|
|
|
DEVICE_PACKAGES := kmod-usb2
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
IMAGE_SIZE := 116m
|
|
|
|
KERNEL_SIZE := 5120k
|
|
|
|
UBINIZE_OPTS := -E 5
|
|
|
|
SUPPORTED_DEVICES += hiveap-121
|
|
|
|
IMAGES += factory.bin
|
2019-12-19 19:42:19 +00:00
|
|
|
IMAGE/factory.bin := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi | \
|
2020-03-10 13:58:27 +00:00
|
|
|
check-size
|
2019-10-27 14:49:18 +00:00
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += aerohive_hiveap-121
|
|
|
|
|
2019-11-05 06:36:25 +00:00
|
|
|
define Device/domywifi_dw33d
|
|
|
|
SOC := qca9558
|
|
|
|
DEVICE_VENDOR := DomyWifi
|
|
|
|
DEVICE_MODEL := DW33D
|
|
|
|
DEVICE_PACKAGES := kmod-usb2 kmod-usb-storage kmod-usb-ledtrig-usbport \
|
2020-03-07 19:20:23 +00:00
|
|
|
kmod-ath10k-ct ath10k-firmware-qca988x-ct
|
2019-11-05 06:36:25 +00:00
|
|
|
KERNEL_SIZE := 5120k
|
|
|
|
IMAGE_SIZE := 98304k
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
UBINIZE_OPTS := -E 5
|
|
|
|
IMAGES += factory.bin
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
IMAGE/factory.bin := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi | \
|
2020-03-10 13:58:27 +00:00
|
|
|
check-size
|
2019-11-05 06:36:25 +00:00
|
|
|
endef
|
|
|
|
TARGET_DEVICES += domywifi_dw33d
|
|
|
|
|
2021-10-01 05:53:06 +00:00
|
|
|
define Device/dongwon_dw02-412h
|
|
|
|
SOC := qca9557
|
|
|
|
DEVICE_VENDOR := Dongwon T&I
|
|
|
|
DEVICE_MODEL := DW02-412H
|
|
|
|
DEVICE_ALT0_VENDOR := KT
|
|
|
|
DEVICE_ALT0_MODEL := GiGA WiFi home
|
|
|
|
DEVICE_PACKAGES := kmod-usb2 kmod-ath10k-ct ath10k-firmware-qca988x-ct
|
|
|
|
KERNEL_SIZE := 8192k
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
2022-01-31 04:21:47 +00:00
|
|
|
KERNEL := $$(KERNEL) | dongwon-header
|
|
|
|
KERNEL_INITRAMFS := $$(KERNEL)
|
2021-10-01 05:53:06 +00:00
|
|
|
UBINIZE_OPTS := -E 5
|
|
|
|
IMAGES += factory.img
|
|
|
|
IMAGE/factory.img := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi | \
|
|
|
|
check-size
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Device/dongwon_dw02-412h-64m
|
|
|
|
$(Device/dongwon_dw02-412h)
|
|
|
|
DEVICE_VARIANT := (64M)
|
|
|
|
DEVICE_ALT0_VARIANT := (64M)
|
|
|
|
IMAGE_SIZE := 49152k
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += dongwon_dw02-412h-64m
|
|
|
|
|
|
|
|
define Device/dongwon_dw02-412h-128m
|
|
|
|
$(Device/dongwon_dw02-412h)
|
|
|
|
DEVICE_VARIANT := (128M)
|
|
|
|
DEVICE_ALT0_VARIANT := (128M)
|
|
|
|
IMAGE_SIZE := 114688k
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += dongwon_dw02-412h-128m
|
|
|
|
|
ath79: GL-AR300M: provide NAND support; increase to 4 MB kernel
The GL.iNet GL-AR300M has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework. Devices with both NOR and NAND flash can support
independent firmware on each, with U-Boot able to boot from either.
The OEM U-Boot will fall back to the NOR firmware after three
"unsuccessful" boots.
The family of GL-AR300M devices on the ath79 platform now includes:
* glinet,gl-ar300m-lite "generic" target, NOR-only board
* glinet,gl-ar300m-nand "nand" target
* glinet,gl-ar300m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar300m-nor firmware produced by this commit:
* gl-ar300m -- OEM v3 NOR ar71xx (openwrt-ar300m16-*.bin)
* gl-ar300m -- OpenWrt 18.06 ar71xx
* gl-ar300m -- OpenWrt 19.07 ar71xx
Other upgrades to these images should be performed through U-Boot.
The GL-AR300M OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar300m-nand and glinet,gl-ar300m-nor images generated
after this commit should safely flash each other using sysupgrade.
The boot counter is implemented by the OEM using u-boot-env. At this
time, it does not appear that the switch on the side of the unit can
be used to select NOR vs. NAND boot and the fail-over is only from
NAND to NOR. To save flash wear, it is only reset when running the
glinet,gl-ar300m-nand firmware.
NAND-specific base-files are used to remove impact on existing
generic and tiny targets.
As there is now no "generic" build appropriate for the GL-AR300M16,
(or for users of the GL-AR300M that do not need access to NAND)
it will be introduced in a subsequent commit.
Note: `mtd_get_mac_binary art 0x6` does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 00:51:17 +00:00
|
|
|
define Device/glinet_gl-ar300m-common-nand
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := qca9531
|
2019-07-07 08:02:49 +00:00
|
|
|
DEVICE_VENDOR := GL.iNet
|
2019-06-16 19:34:46 +00:00
|
|
|
DEVICE_MODEL := GL-AR300M
|
ath79: GL-AR300M: provide NAND support; increase to 4 MB kernel
The GL.iNet GL-AR300M has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework. Devices with both NOR and NAND flash can support
independent firmware on each, with U-Boot able to boot from either.
The OEM U-Boot will fall back to the NOR firmware after three
"unsuccessful" boots.
The family of GL-AR300M devices on the ath79 platform now includes:
* glinet,gl-ar300m-lite "generic" target, NOR-only board
* glinet,gl-ar300m-nand "nand" target
* glinet,gl-ar300m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar300m-nor firmware produced by this commit:
* gl-ar300m -- OEM v3 NOR ar71xx (openwrt-ar300m16-*.bin)
* gl-ar300m -- OpenWrt 18.06 ar71xx
* gl-ar300m -- OpenWrt 19.07 ar71xx
Other upgrades to these images should be performed through U-Boot.
The GL-AR300M OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar300m-nand and glinet,gl-ar300m-nor images generated
after this commit should safely flash each other using sysupgrade.
The boot counter is implemented by the OEM using u-boot-env. At this
time, it does not appear that the switch on the side of the unit can
be used to select NOR vs. NAND boot and the fail-over is only from
NAND to NOR. To save flash wear, it is only reset when running the
glinet,gl-ar300m-nand firmware.
NAND-specific base-files are used to remove impact on existing
generic and tiny targets.
As there is now no "generic" build appropriate for the GL-AR300M16,
(or for users of the GL-AR300M that do not need access to NAND)
it will be introduced in a subsequent commit.
Note: `mtd_get_mac_binary art 0x6` does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 00:51:17 +00:00
|
|
|
DEVICE_PACKAGES := kmod-usb2
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
IMAGE_SIZE := 16000k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
VID_HDR_OFFSET := 2048
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Device/glinet_gl-ar300m-nand
|
|
|
|
$(Device/glinet_gl-ar300m-common-nand)
|
2019-06-16 19:34:46 +00:00
|
|
|
DEVICE_VARIANT := NAND
|
2018-05-29 08:02:59 +00:00
|
|
|
BLOCKSIZE := 128k
|
ath79: GL-AR300M: provide NAND support; increase to 4 MB kernel
The GL.iNet GL-AR300M has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework. Devices with both NOR and NAND flash can support
independent firmware on each, with U-Boot able to boot from either.
The OEM U-Boot will fall back to the NOR firmware after three
"unsuccessful" boots.
The family of GL-AR300M devices on the ath79 platform now includes:
* glinet,gl-ar300m-lite "generic" target, NOR-only board
* glinet,gl-ar300m-nand "nand" target
* glinet,gl-ar300m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar300m-nor firmware produced by this commit:
* gl-ar300m -- OEM v3 NOR ar71xx (openwrt-ar300m16-*.bin)
* gl-ar300m -- OpenWrt 18.06 ar71xx
* gl-ar300m -- OpenWrt 19.07 ar71xx
Other upgrades to these images should be performed through U-Boot.
The GL-AR300M OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar300m-nand and glinet,gl-ar300m-nor images generated
after this commit should safely flash each other using sysupgrade.
The boot counter is implemented by the OEM using u-boot-env. At this
time, it does not appear that the switch on the side of the unit can
be used to select NOR vs. NAND boot and the fail-over is only from
NAND to NOR. To save flash wear, it is only reset when running the
glinet,gl-ar300m-nand firmware.
NAND-specific base-files are used to remove impact on existing
generic and tiny targets.
As there is now no "generic" build appropriate for the GL-AR300M16,
(or for users of the GL-AR300M that do not need access to NAND)
it will be introduced in a subsequent commit.
Note: `mtd_get_mac_binary art 0x6` does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 00:51:17 +00:00
|
|
|
IMAGES += factory.img
|
|
|
|
IMAGE/factory.img := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
SUPPORTED_DEVICES += glinet,gl-ar300m-nor
|
2018-05-29 08:02:59 +00:00
|
|
|
endef
|
2018-12-31 12:45:29 +00:00
|
|
|
TARGET_DEVICES += glinet_gl-ar300m-nand
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
|
ath79: GL-AR300M: provide NAND support; increase to 4 MB kernel
The GL.iNet GL-AR300M has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework. Devices with both NOR and NAND flash can support
independent firmware on each, with U-Boot able to boot from either.
The OEM U-Boot will fall back to the NOR firmware after three
"unsuccessful" boots.
The family of GL-AR300M devices on the ath79 platform now includes:
* glinet,gl-ar300m-lite "generic" target, NOR-only board
* glinet,gl-ar300m-nand "nand" target
* glinet,gl-ar300m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar300m-nor firmware produced by this commit:
* gl-ar300m -- OEM v3 NOR ar71xx (openwrt-ar300m16-*.bin)
* gl-ar300m -- OpenWrt 18.06 ar71xx
* gl-ar300m -- OpenWrt 19.07 ar71xx
Other upgrades to these images should be performed through U-Boot.
The GL-AR300M OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar300m-nand and glinet,gl-ar300m-nor images generated
after this commit should safely flash each other using sysupgrade.
The boot counter is implemented by the OEM using u-boot-env. At this
time, it does not appear that the switch on the side of the unit can
be used to select NOR vs. NAND boot and the fail-over is only from
NAND to NOR. To save flash wear, it is only reset when running the
glinet,gl-ar300m-nand firmware.
NAND-specific base-files are used to remove impact on existing
generic and tiny targets.
As there is now no "generic" build appropriate for the GL-AR300M16,
(or for users of the GL-AR300M that do not need access to NAND)
it will be introduced in a subsequent commit.
Note: `mtd_get_mac_binary art 0x6` does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 00:51:17 +00:00
|
|
|
define Device/glinet_gl-ar300m-nor
|
|
|
|
$(Device/glinet_gl-ar300m-common-nand)
|
|
|
|
DEVICE_VARIANT := NOR
|
|
|
|
SUPPORTED_DEVICES += glinet,gl-ar300m-nand gl-ar300m
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += glinet_gl-ar300m-nor
|
|
|
|
|
ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework.
At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.
The family of GL-AR750S devices on the ath79 platform now includes:
* glinet,gl-ar750m-nor-nand "nand" target
* glinet,gl-ar750m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:
* glinet,gl-ar750s -- OpenWrt 19.07 ar71xx
* glinet,gl-ar750s -- OpenWrt 19.07 ath79
Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.
Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.
NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"
The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.
This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.
Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Cc: Alexander Wördekemper <alexwoerde@web.de>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 15:18:34 +00:00
|
|
|
define Device/glinet_gl-ar750s-common
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := qca9563
|
ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework.
At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.
The family of GL-AR750S devices on the ath79 platform now includes:
* glinet,gl-ar750m-nor-nand "nand" target
* glinet,gl-ar750m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:
* glinet,gl-ar750s -- OpenWrt 19.07 ar71xx
* glinet,gl-ar750s -- OpenWrt 19.07 ath79
Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.
Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.
NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"
The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.
This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.
Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Cc: Alexander Wördekemper <alexwoerde@web.de>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 15:18:34 +00:00
|
|
|
DEVICE_VENDOR := GL.iNet
|
|
|
|
DEVICE_MODEL := GL-AR750S
|
2019-12-19 19:42:19 +00:00
|
|
|
DEVICE_PACKAGES := kmod-ath10k-ct ath10k-firmware-qca9887-ct kmod-usb2 \
|
|
|
|
kmod-usb-storage block-mount
|
ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework.
At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.
The family of GL-AR750S devices on the ath79 platform now includes:
* glinet,gl-ar750m-nor-nand "nand" target
* glinet,gl-ar750m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:
* glinet,gl-ar750s -- OpenWrt 19.07 ar71xx
* glinet,gl-ar750s -- OpenWrt 19.07 ath79
Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.
Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.
NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"
The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.
This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.
Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Cc: Alexander Wördekemper <alexwoerde@web.de>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 15:18:34 +00:00
|
|
|
IMAGE_SIZE := 16000k
|
|
|
|
endef
|
|
|
|
|
|
|
|
define Device/glinet_gl-ar750s-nor-nand
|
|
|
|
$(Device/glinet_gl-ar750s-common)
|
|
|
|
DEVICE_VARIANT := NOR/NAND
|
2020-07-21 22:00:36 +00:00
|
|
|
KERNEL_SIZE := 4096k
|
ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework.
At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.
The family of GL-AR750S devices on the ath79 platform now includes:
* glinet,gl-ar750m-nor-nand "nand" target
* glinet,gl-ar750m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:
* glinet,gl-ar750s -- OpenWrt 19.07 ar71xx
* glinet,gl-ar750s -- OpenWrt 19.07 ath79
Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.
Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.
NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"
The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.
This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.
Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Cc: Alexander Wördekemper <alexwoerde@web.de>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
2019-06-02 15:18:34 +00:00
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
SUPPORTED_DEVICES += glinet,gl-ar750s-nor
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += glinet_gl-ar750s-nor-nand
|
|
|
|
|
|
|
|
define Device/glinet_gl-ar750s-nor
|
|
|
|
$(Device/glinet_gl-ar750s-common)
|
|
|
|
DEVICE_VARIANT := NOR
|
|
|
|
SUPPORTED_DEVICES += gl-ar750s glinet,gl-ar750s glinet,gl-ar750s-nor-nand
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += glinet_gl-ar750s-nor
|
|
|
|
|
2020-07-11 12:58:47 +00:00
|
|
|
define Device/glinet_gl-e750
|
|
|
|
SOC := qca9531
|
|
|
|
DEVICE_VENDOR := GL.iNet
|
|
|
|
DEVICE_MODEL := GL-E750
|
|
|
|
DEVICE_PACKAGES := kmod-ath10k-ct ath10k-firmware-qca9887-ct kmod-usb2
|
|
|
|
SUPPORTED_DEVICES += gl-e750
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
IMAGE_SIZE := 131072k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
VID_HDR_OFFSET := 2048
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
IMAGES += factory.img
|
|
|
|
IMAGE/factory.img := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += glinet_gl-e750
|
|
|
|
|
2021-08-20 19:41:19 +00:00
|
|
|
define Device/glinet_gl-xe300
|
|
|
|
SOC := qca9531
|
|
|
|
DEVICE_VENDOR := GL.iNet
|
|
|
|
DEVICE_MODEL := GL-XE300
|
|
|
|
DEVICE_PACKAGES := kmod-usb2 block-mount kmod-usb-serial-ch341
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
IMAGE_SIZE := 131072k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
VID_HDR_OFFSET := 2048
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
IMAGES += factory.img
|
|
|
|
IMAGE/factory.img := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += glinet_gl-xe300
|
|
|
|
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
# fake rootfs is mandatory, pad-offset 129 equals (2 * uimage_header + 0xff)
|
|
|
|
define Device/netgear_ath79_nand
|
|
|
|
DEVICE_VENDOR := NETGEAR
|
|
|
|
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ledtrig-usbport
|
2019-12-22 20:53:29 +00:00
|
|
|
KERNEL_SIZE := 4096k
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
IMAGE_SIZE := 25600k
|
|
|
|
KERNEL := kernel-bin | append-dtb | lzma -d20 | \
|
2020-11-04 09:21:16 +00:00
|
|
|
pad-offset $$(KERNEL_SIZE) 129 | uImage lzma | \
|
2019-12-19 19:42:19 +00:00
|
|
|
append-string -e '\xff' | \
|
2020-11-04 09:21:16 +00:00
|
|
|
append-uImage-fakehdr filesystem $$(UIMAGE_MAGIC)
|
|
|
|
KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma -d20 | uImage lzma
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
IMAGES := sysupgrade.bin factory.img
|
2019-12-19 19:42:19 +00:00
|
|
|
IMAGE/factory.img := append-kernel | append-ubi | netgear-dni | \
|
2020-03-10 13:58:27 +00:00
|
|
|
check-size
|
2021-06-20 16:54:36 +00:00
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | check-size | append-metadata
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
UBINIZE_OPTS := -E 5
|
|
|
|
endef
|
|
|
|
|
2021-09-17 12:52:04 +00:00
|
|
|
define Device/netgear_r6100
|
|
|
|
SOC := ar9344
|
|
|
|
DEVICE_MODEL := R6100
|
|
|
|
UIMAGE_MAGIC := 0x36303030
|
|
|
|
NETGEAR_BOARD_ID := R6100
|
|
|
|
NETGEAR_HW_ID := 29764434+0+128+128+2x2+2x2
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
DEVICE_PACKAGES += kmod-ath10k-ct ath10k-firmware-qca988x-ct
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_r6100
|
|
|
|
|
ath79: add support for Netgear WNDR3700v4
This patch adds ath79 support for Netgear WNDR3700v4.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR3700v4
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr3700-v4=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Paul Blazejowski <paulb@blazebox.homeip.net>
2019-11-13 19:19:32 +00:00
|
|
|
define Device/netgear_wndr3700-v4
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := ar9344
|
ath79: add support for Netgear WNDR3700v4
This patch adds ath79 support for Netgear WNDR3700v4.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR3700v4
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr3700-v4=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Paul Blazejowski <paulb@blazebox.homeip.net>
2019-11-13 19:19:32 +00:00
|
|
|
DEVICE_MODEL := WNDR3700
|
|
|
|
DEVICE_VARIANT := v4
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x33373033
|
ath79: add support for Netgear WNDR3700v4
This patch adds ath79 support for Netgear WNDR3700v4.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR3700v4
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr3700-v4=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Paul Blazejowski <paulb@blazebox.homeip.net>
2019-11-13 19:19:32 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR3700v4
|
|
|
|
NETGEAR_HW_ID := 29763948+128+128
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr3700-v4
|
|
|
|
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
define Device/netgear_wndr4300
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := ar9344
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
DEVICE_MODEL := WNDR4300
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x33373033
|
ath79: add support for Netgear WNDR4300
This patch adds ath79 support for Netgear WNDR4300.
Router was previously supported by ar71xx target only.
Note: device requires 'ar934x-nand' driver in kernel.
Specification
=============
* Description: Netgear WNDR4300
* Loader: U-boot
* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 128 MiB (NAND)
- U-boot binary: 256 KiB
- U-boot environment: 256 KiB
- ART: 256 KiB
- POT: 512 KiB
- Language: 2 MiB
- Config: 512 KiB
- Traffic Meter: 3 MiB
- Firmware: 25 MiB
- ART Backup: 256 KiB
- Reserved: 96 MiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (amber/green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 2.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Note about partitioning: firmware partition offset (0x6c0000) is
hardcoded into vendor's u-boot, so this partition cannot be moved
and resized to include Netgear-specific flash areas (pot, language,
config, traffic_meter) not used by OpenWrt.
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-10-31 20:18:10 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR4300
|
|
|
|
NETGEAR_HW_ID := 29763948+0+128+128+2x2+3x3
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr4300
|
|
|
|
|
ath79/nand: add support for Netgear WNDR4300SW
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2020-05-23 08:50:03 +00:00
|
|
|
define Device/netgear_wndr4300sw
|
|
|
|
SOC := ar9344
|
|
|
|
DEVICE_MODEL := WNDR4300SW
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x33373033
|
ath79/nand: add support for Netgear WNDR4300SW
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
2020-05-23 08:50:03 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR4300SW
|
|
|
|
NETGEAR_HW_ID := 29763948+0+128+128+2x2+3x3
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr4300sw
|
|
|
|
|
ath79/nand: add support for Netgear WNDR4300TN
This patch adds support for the WNDR4300TN, marketed by Belgian ISP
Telenet. The hardware is the same as the WNDR4300 v1, without the
fifth ethernet port (WAN) and the USB port. The circuit board has
the traces, but the components are missing.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2.4 GHz)
* Ethernet: 4x 1000Base-T
* LED: Power, LAN, WiFi 2.4GHz, WiFi 5GHz, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.0.51/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Telenet
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the gray circle around it, next to the Telenet logo)
and turn the router on while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
Signed-off-by: Davy Hollevoet <github@natox.be>
[use DT label reference for adding LEDs in DTSI files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-22 12:45:14 +00:00
|
|
|
define Device/netgear_wndr4300tn
|
|
|
|
SOC := ar9344
|
|
|
|
DEVICE_MODEL := WNDR4300TN
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x33373033
|
ath79/nand: add support for Netgear WNDR4300TN
This patch adds support for the WNDR4300TN, marketed by Belgian ISP
Telenet. The hardware is the same as the WNDR4300 v1, without the
fifth ethernet port (WAN) and the USB port. The circuit board has
the traces, but the components are missing.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2.4 GHz)
* Ethernet: 4x 1000Base-T
* LED: Power, LAN, WiFi 2.4GHz, WiFi 5GHz, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.0.51/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Telenet
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the gray circle around it, next to the Telenet logo)
and turn the router on while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300tn-squashfs-factory.img
Signed-off-by: Davy Hollevoet <github@natox.be>
[use DT label reference for adding LEDs in DTSI files]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-22 12:45:14 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR4300TN
|
|
|
|
NETGEAR_HW_ID := 29763948+0+128+128+2x2+3x3
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr4300tn
|
|
|
|
|
ath79: add support for Netgear WNDR4300 v2
This patch introduces support for Netgear WNDR4300v2.
Specification
=============
* Description: Netgear WNDR4300 v2
* Loader: U-boot
* SOC: Qualcomm Atheros QCA9563 (775 MHz)
* RAM: 128 MiB
* Flash: 2 MiB SPI-NOR + 128 MiB SPI-NAND
- NOR: U-boot binary: 256 KiB
- NOR: U-boot environment: 64 KiB
- NOR: ART Backup: 64 KiB
- NOR: Config: 64 KiB
- NOR: Traffic Meter: 64 KiB
- NOR: POT: 64 KiB
- NOR: Reserved: 1408 KiB
- NOR: ART: 64 KiB
- NAND: Firmware: 25600 KiB (see notes for OpenWrt)
- NAND: Language: 2048 KiB
- NAND: mtdoops Crash Dump: 128 KiB
- NAND: Reserved: 103296 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8337)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 1.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Important Notes
===============
0. NOR Flash (2 MiB) is not touched by OpenWrt installation.
1. NAND Flash (128 MiB) layout under OpenWrt is changed as follows:
all space is split between 4 MiB kernel and 124 MiB UBI areas;
vendor partitions (language and mtdoops) are removed; kernel space
size can be further expanded if needed; maximum image size is set
to 25600k for compatibility reasons and can also be increased.
2. CPU clock is 775 MHz, not 750 MHz.
3. 5 GHz wireless radio chip is Atheros AR9580-AR1A with bogus PCI
device ID 0xabcd. For ath9k driver to load successfully, this is
overriden in DTS with correct value for this chip, 0x0033.
4. RFKILL button is wired to AR9580 pin 9 which is normally disabled
by chip definition in ath9k code (0x0000F4FF gpio mask). Therefore
'qca,gpio-mask=<0xf6ff>' hack must be used for button to work
properly.
5. USB port is always on, no GPIO for 5V power control has been
identified.
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300-v2=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-12-22 20:54:33 +00:00
|
|
|
define Device/netgear_wndr4300-v2
|
|
|
|
SOC := qca9563
|
|
|
|
DEVICE_MODEL := WNDR4300
|
|
|
|
DEVICE_VARIANT := v2
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x27051956
|
ath79: add support for Netgear WNDR4300 v2
This patch introduces support for Netgear WNDR4300v2.
Specification
=============
* Description: Netgear WNDR4300 v2
* Loader: U-boot
* SOC: Qualcomm Atheros QCA9563 (775 MHz)
* RAM: 128 MiB
* Flash: 2 MiB SPI-NOR + 128 MiB SPI-NAND
- NOR: U-boot binary: 256 KiB
- NOR: U-boot environment: 64 KiB
- NOR: ART Backup: 64 KiB
- NOR: Config: 64 KiB
- NOR: Traffic Meter: 64 KiB
- NOR: POT: 64 KiB
- NOR: Reserved: 1408 KiB
- NOR: ART: 64 KiB
- NAND: Firmware: 25600 KiB (see notes for OpenWrt)
- NAND: Language: 2048 KiB
- NAND: mtdoops Crash Dump: 128 KiB
- NAND: Reserved: 103296 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8337)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 1.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Important Notes
===============
0. NOR Flash (2 MiB) is not touched by OpenWrt installation.
1. NAND Flash (128 MiB) layout under OpenWrt is changed as follows:
all space is split between 4 MiB kernel and 124 MiB UBI areas;
vendor partitions (language and mtdoops) are removed; kernel space
size can be further expanded if needed; maximum image size is set
to 25600k for compatibility reasons and can also be increased.
2. CPU clock is 775 MHz, not 750 MHz.
3. 5 GHz wireless radio chip is Atheros AR9580-AR1A with bogus PCI
device ID 0xabcd. For ath9k driver to load successfully, this is
overriden in DTS with correct value for this chip, 0x0033.
4. RFKILL button is wired to AR9580 pin 9 which is normally disabled
by chip definition in ath9k code (0x0000F4FF gpio mask). Therefore
'qca,gpio-mask=<0xf6ff>' hack must be used for button to work
properly.
5. USB port is always on, no GPIO for 5V power control has been
identified.
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300-v2=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2019-12-22 20:54:33 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR4500series
|
|
|
|
NETGEAR_HW_ID := 29764821+2+128+128+3x3+3x3+5508012175
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr4300-v2
|
|
|
|
|
2019-12-22 20:55:54 +00:00
|
|
|
define Device/netgear_wndr4500-v3
|
|
|
|
SOC := qca9563
|
|
|
|
DEVICE_MODEL := WNDR4500
|
|
|
|
DEVICE_VARIANT := v3
|
2020-11-04 09:21:16 +00:00
|
|
|
UIMAGE_MAGIC := 0x27051956
|
2019-12-22 20:55:54 +00:00
|
|
|
NETGEAR_BOARD_ID := WNDR4500series
|
|
|
|
NETGEAR_HW_ID := 29764821+2+128+128+3x3+3x3+5508012173
|
|
|
|
$(Device/netgear_ath79_nand)
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += netgear_wndr4500-v3
|
|
|
|
|
ath79: support ZTE MF286
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
mini-PCIE form factor, with 3 internal antennas and 2 external antenna
connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
monitoring handled by modem.
- Label MAC device: eth0
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.
STEP 1: gaining root shell:
Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.
Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
"http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.
Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.
- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
https://busybox.net/downloads/binaries/1.21.1/busybox-mips
and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
field named "addURLFilter", so it looks like this:
<input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
execute it. You should be able to log in at port 23, using
"admin/admin" as credentials.
Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 00080000 00010000 "uboot"
mtd1: 00020000 00010000 "uboot-env"
mtd2: 00140000 00020000 "fota-flag"
mtd3: 00140000 00020000 "caldata"
mtd4: 00140000 00020000 "mac"
mtd5: 00600000 00020000 "cfg-param"
mtd6: 00140000 00020000 "oops"
mtd7: 00800000 00020000 "web"
mtd8: 00300000 00020000 "kernel"
mtd9: 01f00000 00020000 "rootfs"
mtd10: 01900000 00020000 "data"
mtd11: 03200000 00020000 "fota"
Differences might indicate that this is NOT a vanilla MF286 device but
one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
- If the count of MTD partitions is different, this might indicate that
this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.1.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.1.22
setenv ipaddr 192.168.1.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
is the size of kernel partition. Pad the output of second file to
eraseblock size:
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k count=24 \
of=openwrt-ath79-zte_mf286-intermediate-kernel.bin
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k skip=24 conv=sync \
of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
/tmp. This is CRITICAL for installation, as erasing rootfs will cut
you off from those tools on flash!
- After backing up the previous MTD contents, write the images to the
respective MTD devices:
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<kernel-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<rootfs-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Ensure that no bad blocks were present on the devices while writing.
If they were present, you may need to vary the split between
kernel and rootfs parts, so U-boot reads a valid uImage after skipping
the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
initramfs:
reboot -f
- After rebooting, SSH into the device and use sysupgrade to perform
proper installation.
Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
and name it root_uImage:
dd if=/dev/zero of=padding.bin bs=8M count=1
cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
root_uImage
- Set up a TFTP server at 192.0.0.1/8. Router will use random address
from that range.
- Put the previously generated "root_uImage" into TFTP server root
directory.
- Deliberately erase "kernel" partition" using stock firmware after
taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
initramfs image, which will let you perform actual installation using
sysupgrade. This might take a considerable time, sometimes the router
doesn't establish Ethernet link properly right after booting. Be
patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
light up. At this moment, perform power-on reset, and wait for OpenWrt
initramfs to finish booting. Then proceed to actual installation.
STEP 4: Actual installation:
- scp the sysupgrade image to the device:
scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:
cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin
You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.
Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write <kernel_mtd> mtd4_kernel.bin
rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
rm mtd3_ubiconcat0.bin
(scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
rm mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
your drive
- Mount your flash drive
mkdir /tmp/usb
mount /dev/sda1 /tmp/usb
- Remount your UBI volume at /overlay to R/O
mount -o remount,ro /overlay
- Write back the kernel and ubi partitions from USB drive
cd /tmp/usb
mtd write mtd4_kernel.bin /dev/<kernel_mtd>
mtd write mtd8_ubi.bin /dev/<kernel_ubi>
- If everything went well, force a device reboot with
reboot -f
Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.
Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
concatenating "web", "kernel", "rootfs" images dumped from the device,
as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
TFTP pre-installation method.
Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
correct GPIO mapping. All other LEDs are controlled by modem,
including this one in stock firmware. GPIO19, mapped there only acts
as a gate, while the actual signal source seems to be 5GHz Wi-Fi
radio, however it seems it is not the LED exposed by ath10k as
ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
0x320000000000, which is impossible to encode in the device tree, so I
took the liberty of using MAC address increment of 1 for it, to ensure
different BSSID for both Wi-Fi interfaces.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
2022-01-09 19:46:53 +00:00
|
|
|
define Device/zte_mf286
|
|
|
|
SOC := qca9563
|
|
|
|
DEVICE_VENDOR := ZTE
|
|
|
|
DEVICE_MODEL := MF286
|
|
|
|
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ledtrig-usbport kmod-ath10k-ct \
|
|
|
|
ath10k-firmware-qca988x-ct kmod-usb-net-qmi-wwan kmod-usb-serial-option \
|
|
|
|
uqmi
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zte_mf286
|
|
|
|
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
define Device/zyxel_nbg6716
|
2019-12-20 00:12:42 +00:00
|
|
|
SOC := qca9558
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
DEVICE_VENDOR := ZyXEL
|
2019-10-27 23:30:51 +00:00
|
|
|
DEVICE_MODEL := NBG6716
|
2019-12-19 19:42:19 +00:00
|
|
|
DEVICE_PACKAGES := kmod-usb2 kmod-usb-ledtrig-usbport kmod-ath10k-ct \
|
|
|
|
ath10k-firmware-qca988x-ct
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
RAS_BOARD := NBG6716
|
|
|
|
RAS_ROOTFS_SIZE := 29696k
|
|
|
|
RAS_VERSION := "OpenWrt Linux-$(LINUX_VERSION)"
|
|
|
|
KERNEL_SIZE := 4096k
|
|
|
|
BLOCKSIZE := 128k
|
|
|
|
PAGESIZE := 2048
|
2022-01-13 21:08:38 +00:00
|
|
|
LOADER_TYPE := bin
|
|
|
|
KERNEL := kernel-bin | append-dtb | lzma | loader-kernel | uImage none | \
|
|
|
|
zyxel-buildkerneljffs | check-size 4096k
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
IMAGES := sysupgrade.tar sysupgrade-4M-Kernel.bin factory.bin
|
2019-12-19 19:42:19 +00:00
|
|
|
IMAGE/sysupgrade.tar/squashfs := append-rootfs | pad-to $$$$(BLOCKSIZE) | \
|
|
|
|
sysupgrade-tar rootfs=$$$$@ | append-metadata
|
|
|
|
IMAGE/sysupgrade-4M-Kernel.bin/squashfs := append-kernel | \
|
|
|
|
pad-to $$$$(KERNEL_SIZE) | append-ubi | pad-to 263192576 | gzip
|
|
|
|
IMAGE/factory.bin := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi | \
|
|
|
|
zyxel-factory
|
ath79: add support for ZyXEL NBG6716
Attention: Kernel partition size has been enlarged to 4MB.
To switch, you must update to latest ar71xx-nand snapshort and flash the
sysupgrade-4M-Kernel.bin:
zcat openwrt-ath79-nand-zyxel_nbg6716-squashfs-sysupgrade-4M-Kernel.bin | mtd -r -e ubi write - firmware; reboot -f
You will end up with a fresh config if you do not inject config into the image.
The NBG6716 may come with 128MB or 256MB NAND. ar71xx was able to use all, but
ath79 can only use the first 128MB. Therefore the complete NAND needs to be
overwritten. If not, the old UBI may make problems and lead to reboot loop.
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6716> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6716>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6716> ATSE NBG6716
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6716> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6716> ATGU
|NBG6716#
Signed-off-by: André Valentin <avalentin@marcant.net>
2019-10-23 09:30:30 +00:00
|
|
|
UBINIZE_OPTS := -E 5
|
|
|
|
endef
|
|
|
|
TARGET_DEVICES += zyxel_nbg6716
|