2054 lines
79 KiB
C
Raw Normal View History

2019-12-10 14:03:47 +01:00
//Author: Xianjun Jiao. putaoshu@msn.com; xianjun.jiao@imec.be
#include <linux/bitops.h>
#include <linux/dmapool.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/of_irq.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/io-64-nonatomic-lo-hi.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/wait.h>
#include <linux/sched/task.h>
#include <linux/dma/xilinx_dma.h>
#include <linux/spi/spi.h>
#include <net/mac80211.h>
#include <linux/clk.h>
#include <linux/clkdev.h>
#include <linux/clk-provider.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/gpio.h>
#include <linux/leds.h>
#define IIO_AD9361_USE_PRIVATE_H_
#include "ad9361/ad9361_regs.h"
#include "ad9361/ad9361.h"
#include "ad9361/ad9361_private.h"
#include <../../drivers/iio/frequency/cf_axi_dds.h>
#include "../user_space/sdrctl_src/nl80211_testmode_def.h"
#include "hw_def.h"
#include "sdr.h"
// driver API of component driver
extern struct tx_intf_driver_api *tx_intf_api;
extern struct rx_intf_driver_api *rx_intf_api;
extern struct openofdm_tx_driver_api *openofdm_tx_api;
extern struct openofdm_rx_driver_api *openofdm_rx_api;
extern struct xpu_driver_api *xpu_api;
static int test_mode = 0; // 0 normal; 1 rx test
MODULE_AUTHOR("Xianjun Jiao");
MODULE_DESCRIPTION("SDR driver");
MODULE_LICENSE("GPL v2");
module_param(test_mode, int, 0);
MODULE_PARM_DESC(myint, "test_mode. 0 normal; 1 rx test");
// ---------------rfkill---------------------------------------
static bool openwifi_is_radio_enabled(struct openwifi_priv *priv)
{
int reg;
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
else
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
if (reg == AD9361_RADIO_ON_TX_ATT)
return true;// 0 off, 1 on
return false;
}
void openwifi_rfkill_init(struct ieee80211_hw *hw)
{
struct openwifi_priv *priv = hw->priv;
priv->rfkill_off = openwifi_is_radio_enabled(priv);
printk("%s openwifi_rfkill_init: wireless switch is %s\n", sdr_compatible_str, priv->rfkill_off ? "on" : "off");
wiphy_rfkill_set_hw_state(hw->wiphy, !priv->rfkill_off);
wiphy_rfkill_start_polling(hw->wiphy);
}
void openwifi_rfkill_poll(struct ieee80211_hw *hw)
{
bool enabled;
struct openwifi_priv *priv = hw->priv;
enabled = openwifi_is_radio_enabled(priv);
printk("%s openwifi_rfkill_poll: wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
if (unlikely(enabled != priv->rfkill_off)) {
priv->rfkill_off = enabled;
printk("%s openwifi_rfkill_poll: WARNING wireless radio switch turned %s\n", sdr_compatible_str, enabled ? "on" : "off");
wiphy_rfkill_set_hw_state(hw->wiphy, !enabled);
}
}
void openwifi_rfkill_exit(struct ieee80211_hw *hw)
{
printk("%s openwifi_rfkill_exit\n", sdr_compatible_str);
wiphy_rfkill_stop_polling(hw->wiphy);
}
//----------------rfkill end-----------------------------------
//static void ad9361_rf_init(void);
//static void ad9361_rf_stop(void);
//static void ad9361_rf_calc_rssi(void);
static void ad9361_rf_set_channel(struct ieee80211_hw *dev,
struct ieee80211_conf *conf)
{
struct openwifi_priv *priv = dev->priv;
u32 actual_rx_lo = conf->chandef.chan->center_freq - priv->rx_freq_offset_to_lo_MHz;
u32 actual_tx_lo;
bool change_flag = (actual_rx_lo != priv->actual_rx_lo);
if (change_flag) {
priv->actual_rx_lo = actual_rx_lo;
actual_tx_lo = conf->chandef.chan->center_freq - priv->tx_freq_offset_to_lo_MHz;
ad9361_clk_set_rate(priv->ad9361_phy->clks[RX_RFPLL], ( ((u64)1000000ull)*((u64)actual_rx_lo )>>1) );
ad9361_clk_set_rate(priv->ad9361_phy->clks[TX_RFPLL], ( ((u64)1000000ull)*((u64)actual_tx_lo )>>1) );
if (actual_rx_lo<2412) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<=2484) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<5160) {
priv->rssi_correction = 153;
} else if (actual_rx_lo<=5240) {
priv->rssi_correction = 145;
} else if (actual_rx_lo<=5320) {
priv->rssi_correction = 148;
} else {
priv->rssi_correction = 148;
}
xpu_api->XPU_REG_LBT_TH_write((priv->rssi_correction-62)<<1);
if (actual_rx_lo < 2500) {
//priv->slot_time = 20; //20 is default slot time in ERP(OFDM)/11g 2.4G; short one is 9.
//xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_2_4GHZ<<16);
if (priv->band != BAND_2_4GHZ) {
priv->band = BAND_2_4GHZ;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2)*200)<<16) | 200 ); // high 16 bits to cover sig valid of ACK packet, low 16 bits is adjustment of fcs valid waiting time. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((45+2+2)*200)<<16) | 200 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 0 );
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((10)*200)<<16);
}
else {
//priv->slot_time = 9; //default slot time of OFDM PHY (OFDM by default means 5GHz)
// xpu_api->XPU_REG_BAND_CHANNEL_write(BAND_5_8GHZ<<16);
if (priv->band != BAND_5_8GHZ) {
priv->band = BAND_5_8GHZ;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
// //xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2)*200)<<16) | 200 ); // because 5GHz needs longer SIFS (16 instead of 10), we need 58 instead of 48 for XPU low mac setting. let's add 2us for those device that is really "slow"!
// xpu_api->XPU_REG_RECV_ACK_COUNT_TOP_write( (((51+2+2)*200)<<16) | 200 );//add 2us for longer fir. BUT corrding to FPGA probing test, we do not need this
// //xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1200 );
// xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( 1000 );// for longer fir we need this delay 1us shorter
// tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write(((16)*200)<<16);
}
//printk("%s ad9361_rf_set_channel %dM rssi_correction %d\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction);
// //-- use less
//clk_prepare_enable(priv->ad9361_phy->clks[RX_RFPLL]);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
//ad9361_set_trx_clock_chain_default(priv->ad9361_phy);
//printk("%s ad9361_rf_set_channel tune to %d read back %llu\n", sdr_compatible_str,conf->chandef.chan->center_freq,2*priv->ad9361_phy->state->current_rx_lo_freq);
}
printk("%s ad9361_rf_set_channel %dM rssi_correction %d (change flag %d)\n", sdr_compatible_str,conf->chandef.chan->center_freq,priv->rssi_correction,change_flag);
}
const struct openwifi_rf_ops ad9361_rf_ops = {
.name = "ad9361",
// .init = ad9361_rf_init,
// .stop = ad9361_rf_stop,
.set_chan = ad9361_rf_set_channel,
// .calc_rssi = ad9361_rf_calc_rssi,
};
u16 reverse16(u16 d) {
union u16_byte2 tmp0, tmp1;
tmp0.a = d;
tmp1.c[0] = tmp0.c[1];
tmp1.c[1] = tmp0.c[0];
return(tmp1.a);
}
u32 reverse32(u32 d) {
union u32_byte4 tmp0, tmp1;
tmp0.a = d;
tmp1.c[0] = tmp0.c[3];
tmp1.c[1] = tmp0.c[2];
tmp1.c[2] = tmp0.c[1];
tmp1.c[3] = tmp0.c[0];
return(tmp1.a);
}
static int openwifi_init_tx_ring(struct openwifi_priv *priv)
{
struct openwifi_ring *ring = &(priv->tx_ring);
int i;
priv->tx_queue_stopped = false;
ring->bd_wr_idx = 0;
ring->bd_rd_idx = 0;
ring->bds = kmalloc(sizeof(struct openwifi_buffer_descriptor)*NUM_TX_BD,GFP_KERNEL);
if (ring->bds==NULL) {
printk("%s openwifi_init_tx_ring: WARNING Cannot allocate TX ring\n",sdr_compatible_str);
return -ENOMEM;
}
for (i = 0; i < NUM_TX_BD; i++) {
ring->bds[i].num_dma_byte=0;
ring->bds[i].sn=0;
ring->bds[i].hw_queue_idx=0;
ring->bds[i].retry_limit=0;
ring->bds[i].need_ack=0;
ring->bds[i].skb_linked=0; // for tx, skb is from upper layer
//at frist right after skb allocated, head, data, tail are the same.
ring->bds[i].dma_mapping_addr = 0; // for tx, mapping is done after skb is received from uppler layer in tx routine
}
return 0;
}
static void openwifi_free_tx_ring(struct openwifi_priv *priv)
{
struct openwifi_ring *ring = &(priv->tx_ring);
int i;
ring->bd_wr_idx = 0;
ring->bd_rd_idx = 0;
for (i = 0; i < NUM_TX_BD; i++) {
ring->bds[i].num_dma_byte=0;
ring->bds[i].sn=0;
ring->bds[i].hw_queue_idx=0;
ring->bds[i].retry_limit=0;
ring->bds[i].need_ack=0;
if (ring->bds[i].skb_linked == 0 && ring->bds[i].dma_mapping_addr == 0)
continue;
if (ring->bds[i].dma_mapping_addr != 0)
dma_unmap_single(priv->tx_chan->device->dev, ring->bds[i].dma_mapping_addr,ring->bds[i].num_dma_byte, DMA_MEM_TO_DEV);
// if (ring->bds[i].skb_linked!=NULL)
// dev_kfree_skb(ring->bds[i].skb_linked);
if ( (ring->bds[i].dma_mapping_addr != 0 && ring->bds[i].skb_linked == 0) ||
(ring->bds[i].dma_mapping_addr == 0 && ring->bds[i].skb_linked != 0))
printk("%s openwifi_free_tx_ring: WARNING %d skb_linked %08x dma_mapping_addr %08x\n", sdr_compatible_str, i, (u32)(ring->bds[i].skb_linked), ring->bds[i].dma_mapping_addr);
ring->bds[i].skb_linked=0;
ring->bds[i].dma_mapping_addr = 0;
}
if (ring->bds)
kfree(ring->bds);
ring->bds = NULL;
}
static int openwifi_init_rx_ring(struct openwifi_priv *priv)
{
priv->rx_cyclic_buf = dma_alloc_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,&priv->rx_cyclic_buf_dma_mapping_addr,GFP_KERNEL);
if (!priv->rx_cyclic_buf) {
printk("%s openwifi_init_rx_ring: WARNING dma_alloc_coherent failed!\n", sdr_compatible_str);
dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
return(-1);
}
return 0;
}
static void openwifi_free_rx_ring(struct openwifi_priv *priv)
{
if (priv->rx_cyclic_buf)
dma_free_coherent(priv->rx_chan->device->dev,RX_BD_BUF_SIZE*NUM_RX_BD,priv->rx_cyclic_buf,priv->rx_cyclic_buf_dma_mapping_addr);
priv->rx_cyclic_buf_dma_mapping_addr = 0;
priv->rx_cyclic_buf = 0;
}
static int rx_dma_setup(struct ieee80211_hw *dev){
struct openwifi_priv *priv = dev->priv;
struct dma_device *rx_dev = priv->rx_chan->device;
priv->rxd = rx_dev->device_prep_dma_cyclic(priv->rx_chan,priv->rx_cyclic_buf_dma_mapping_addr,RX_BD_BUF_SIZE*NUM_RX_BD,RX_BD_BUF_SIZE,DMA_DEV_TO_MEM,DMA_CTRL_ACK|DMA_PREP_INTERRUPT);
if (!(priv->rxd)) {
openwifi_free_rx_ring(priv);
printk("%s rx_dma_setup: WARNING rx_dev->device_prep_dma_cyclic %d\n", sdr_compatible_str, (u32)(priv->rxd));
return(-1);
}
priv->rxd->callback = 0;
priv->rxd->callback_param = 0;
priv->rx_cookie = priv->rxd->tx_submit(priv->rxd);
if (dma_submit_error(priv->rx_cookie)) {
printk("%s rx_dma_setup: WARNING dma_submit_error(rx_cookie) %d\n", sdr_compatible_str, (u32)(priv->rx_cookie));
return(-1);
}
dma_async_issue_pending(priv->rx_chan);
return(0);
}
static irqreturn_t openwifi_rx_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct openwifi_priv *priv = dev->priv;
struct ieee80211_rx_status rx_status = {0};
struct sk_buff *skb;
struct ieee80211_hdr *hdr;
u32 addr1_low32=0, addr2_low32=0, addr3_low32=0, len, rate_idx, ht_flag, tsft_low, tsft_high;//, fc_di;
u32 dma_driver_buf_idx_mod;
u8 *pdata_tmp, fcs_ok, phy_rx_sn_hw, target_buf_idx;
s8 signal;
u16 rssi_val, addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0;
bool content_ok = false, len_overflow = false;
2019-12-10 14:03:47 +01:00
struct dma_tx_state state;
static u8 target_buf_idx_old = 0xFF;
spin_lock(&priv->lock);
priv->rx_chan->device->device_tx_status(priv->rx_chan,priv->rx_cookie,&state);
target_buf_idx = ((state.residue-1)&(NUM_RX_BD-1));
if (target_buf_idx==target_buf_idx_old) {
//printk("%s openwifi_rx_interrupt: WARNING same idx %d\n", sdr_compatible_str,target_buf_idx);
goto openwifi_rx_interrupt_out;
}
if ( ((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1))!=1 )
printk("%s openwifi_rx_interrupt: WARNING jump idx target %d old %d diff %02x\n", sdr_compatible_str,target_buf_idx,target_buf_idx_old,((target_buf_idx-target_buf_idx_old)&(NUM_RX_BD-1)));
target_buf_idx_old = target_buf_idx;
pdata_tmp = priv->rx_cyclic_buf + target_buf_idx*RX_BD_BUF_SIZE; // our header insertion is at the beginning
tsft_low = (*((u32*)(pdata_tmp+0 )));
tsft_high = (*((u32*)(pdata_tmp+4 )));
rssi_val = (*((u16*)(pdata_tmp+8 )));
len = (*((u16*)(pdata_tmp+12)));
len_overflow = (len>(RX_BD_BUF_SIZE-16)?true:false);
2019-12-10 14:03:47 +01:00
rate_idx = (*((u16*)(pdata_tmp+14)));
// fc_di = (*((u32*)(pdata_tmp+16)));
// addr1_high16 = (*((u16*)(pdata_tmp+16+4)));
// addr1_low32 = (*((u32*)(pdata_tmp+16+4+2)));
// addr2_high16 = (*((u16*)(pdata_tmp+16+6+4)));
// addr2_low32 = (*((u32*)(pdata_tmp+16+6+4+2)));
// addr3_high16 = (*((u16*)(pdata_tmp+16+12+4)));
// addr3_low32 = (*((u32*)(pdata_tmp+16+12+4+2)));
hdr = (struct ieee80211_hdr *)(pdata_tmp+16);
addr1_low32 = *((u32*)(hdr->addr1+2));
addr1_high16 = *((u16*)(hdr->addr1));
if (len>=20) {
addr2_low32 = *((u32*)(hdr->addr2+2));
addr2_high16 = *((u16*)(hdr->addr2));
}
if (len>=26) {
addr3_low32 = *((u32*)(hdr->addr3+2));
addr3_high16 = *((u16*)(hdr->addr3));
}
if (len>=28)
sc = hdr->seq_ctrl;
fcs_ok = ( len_overflow?0:(*(( u8*)(pdata_tmp+16+len-1))) );
2019-12-10 14:03:47 +01:00
//phy_rx_sn_hw = (fcs_ok&(NUM_RX_BD-1));
2019-12-10 14:03:47 +01:00
phy_rx_sn_hw = (fcs_ok&0x7f);//0x7f is FPGA limitation
dma_driver_buf_idx_mod = (state.residue&0x7f);
fcs_ok = ((fcs_ok&0x80)!=0);
ht_flag = ((rate_idx&0x10)!=0);
rate_idx = (rate_idx&0xF);
if ( (len>=14 && (!len_overflow)) && (rate_idx>=8 && rate_idx<=15)) {
2019-12-10 14:03:47 +01:00
// if ( phy_rx_sn_hw!=dma_driver_buf_idx_mod) {
// printk("%s openwifi_rx_interrupt: WARNING sn %d next buf_idx %d!\n", sdr_compatible_str,phy_rx_sn_hw,dma_driver_buf_idx_mod);
// }
content_ok = true;
} else {
printk("%s openwifi_rx_interrupt: WARNING content!\n", sdr_compatible_str);
content_ok = false;
}
rssi_val = (rssi_val>>1);
if ( (rssi_val+128)<priv->rssi_correction )
signal = -128;
else
signal = rssi_val - priv->rssi_correction;
2019-12-10 14:03:47 +01:00
if (addr1_low32!=0xffffffff && addr1_high16!=0xffff)
printk("%s openwifi_rx_interrupt:%4dbytes ht%d %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x fcs%d sn%d i%d %ddBm\n", sdr_compatible_str,
len, ht_flag, wifi_rate_table[rate_idx], hdr->frame_control,hdr->duration_id,
reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
sc,fcs_ok, phy_rx_sn_hw,dma_driver_buf_idx_mod,signal);
2019-12-10 14:03:47 +01:00
// priv->phy_rx_sn_hw_old = phy_rx_sn_hw;
if (content_ok) {
skb = dev_alloc_skb(len);
if (skb) {
skb_put_data(skb,pdata_tmp+16,len);
rx_status.antenna = 0;
// def in ieee80211_rate openwifi_rates 0~11. 0~3 11b(1M~11M), 4~11 11a/g(6M~54M)
rx_status.rate_idx = wifi_rate_table_mapping[rate_idx];
rx_status.signal = signal;
rx_status.freq = dev->conf.chandef.chan->center_freq;
rx_status.band = dev->conf.chandef.chan->band;
rx_status.mactime = ( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
rx_status.flag |= RX_FLAG_MACTIME_START;
if (!fcs_ok)
rx_status.flag |= RX_FLAG_FAILED_FCS_CRC;
rx_status.encoding = RX_ENC_LEGACY;
rx_status.bw = RATE_INFO_BW_20;
memcpy(IEEE80211_SKB_RXCB(skb), &rx_status, sizeof(rx_status)); // put rx_status into skb->cb, from now on skb->cb is not dma_dsts any more.
ieee80211_rx_irqsafe(dev, skb); // call mac80211 function
} else
printk("%s openwifi_rx_interrupt: WARNING skb!\n", sdr_compatible_str);
}
openwifi_rx_interrupt_out:
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
static irqreturn_t openwifi_tx_interrupt(int irq, void *dev_id)
{
struct ieee80211_hw *dev = dev_id;
struct openwifi_priv *priv = dev->priv;
struct openwifi_ring *ring = &(priv->tx_ring);
struct sk_buff *skb;
struct ieee80211_tx_info *info;
u32 reg_val,ring_len, ring_room_left, just_wr_idx, current_rd_idx; //queue_idx_hw, ;
u32 num_dma_byte_hw;
u32 phy_tx_sn_hw;
u8 tx_result;
spin_lock(&priv->lock);
tx_result = xpu_api->XPU_REG_TX_RESULT_read();
reg_val = tx_intf_api->TX_INTF_REG_PKT_INFO_read();// current interrupt is the end of phy_tx_sn_hw pkt transmitting.
num_dma_byte_hw = (reg_val&0xFFFF);
phy_tx_sn_hw = ((reg_val>>16)&MAX_PHY_TX_SN);
//queue_idx_hw = (reg_val&(MAX_NUM_HW_QUEUE-1));
//just_wr_idx = (ring->bd_wr_idx==0?(NUM_TX_BD-1):(ring->bd_wr_idx-1));
just_wr_idx = ((ring->bd_wr_idx-1)&(NUM_TX_BD-1));
while(1) {
current_rd_idx = ring->bd_rd_idx;
dma_unmap_single(priv->tx_chan->device->dev,ring->bds[current_rd_idx].dma_mapping_addr,
ring->bds[current_rd_idx].num_dma_byte, DMA_MEM_TO_DEV);
if (phy_tx_sn_hw != ring->bds[current_rd_idx].sn) {
ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
if (current_rd_idx == just_wr_idx) {
printk("%s openwifi_tx_interrupt: WARNING can not find hw sn %d in driver! curr rd %d just wr %d\n", sdr_compatible_str,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
break;
} else
continue;
}
// a know bd has just been sent to the air
if (num_dma_byte_hw!=ring->bds[current_rd_idx].num_dma_byte) {
ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
printk("%s openwifi_tx_interrupt: WARNING num_dma_byte is different %d VS %d at sn %d curr rd %d just wr %d\n", sdr_compatible_str,num_dma_byte_hw,ring->bds[current_rd_idx].num_dma_byte,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
if (current_rd_idx == just_wr_idx)
break;
else
continue;
}
// num_dma_byte_hw is correct
skb = ring->bds[current_rd_idx].skb_linked;
// dma_buf = skb->data;
//phy_tx_sn_skb = (*((u16*)(dma_buf+6)));
//num_dma_byte_skb = (*((u32*)(dma_buf+8)));
//num_byte_pad_skb = (*((u32*)(dma_buf+12)));
//if ( phy_tx_sn_hw!=phy_tx_sn_entry || phy_tx_sn_hw!=phy_tx_sn_skb || phy_tx_sn_entry!=phy_tx_sn_skb )
// printk("%s openwifi_tx_interrupt: WARNING hw/entry/skb num byte %d/%d/%d pkt sn %d/%d/%d pad %d\n", sdr_compatible_str,
// num_dma_byte_hw, num_dma_byte_entry, num_dma_byte_skb, phy_tx_sn_hw, phy_tx_sn_entry, phy_tx_sn_skb, num_byte_pad_skb);
skb_pull(skb, LEN_PHY_HEADER);
//skb_trim(skb, num_byte_pad_skb);
info = IEEE80211_SKB_CB(skb);
ieee80211_tx_info_clear_status(info);
if ( !(info->flags & IEEE80211_TX_CTL_NO_ACK) ) {
if ((tx_result&0x10)==0)
info->flags |= IEEE80211_TX_STAT_ACK;
// printk("%s openwifi_tx_interrupt: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
}
info->status.rates[0].count = (tx_result&0xF) + 1; //according to our test, the 1st rate is the most important. we only do retry on the 1st rate
info->status.rates[1].idx = -1;
info->status.rates[2].idx = -1;
info->status.rates[3].idx = -1;//in mac80211.h: #define IEEE80211_TX_MAX_RATES 4
if (tx_result&0x10)
printk("%s openwifi_tx_interrupt: WARNING tx_result %02x phy_tx_sn_hw %d. curr rd %d just wr %d\n", sdr_compatible_str,tx_result,phy_tx_sn_hw,current_rd_idx,just_wr_idx);
ieee80211_tx_status_irqsafe(dev, skb);
//ring_len = (just_wr_idx>=current_rd_idx)?(just_wr_idx-current_rd_idx):(just_wr_idx+NUM_TX_BD-current_rd_idx);
ring_len = ((just_wr_idx-current_rd_idx)&(NUM_TX_BD-1));
ring_room_left = NUM_TX_BD - ring_len;
if (ring_room_left > 2 && priv->tx_queue_stopped) {
unsigned int prio = skb_get_queue_mapping(skb);
ieee80211_wake_queue(dev, prio);
printk("%s openwifi_tx_interrupt: WARNING ieee80211_wake_queue. ring_room_left %d prio %d curr rd %d just wr %d\n", sdr_compatible_str,ring_room_left,prio,current_rd_idx,just_wr_idx);
priv->tx_queue_stopped = false;
}
ring->bd_rd_idx = ((ring->bd_rd_idx+1)&(NUM_TX_BD-1));
//if (current_rd_idx == just_wr_idx)
break; // we have hit the sn, we should break
}
spin_unlock(&priv->lock);
return IRQ_HANDLED;
}
u32 gen_parity(u32 v){
v ^= v >> 1;
v ^= v >> 2;
v = (v & 0x11111111U) * 0x11111111U;
return (v >> 28) & 1;
}
u32 calc_phy_header(u8 rate_hw_value, u32 len, u8 *bytes){
//u32 signal_word = 0 ;
u8 SIG_RATE = 0 ;
u8 len_2to0, len_10to3, len_msb,b0,b1,b2, header_parity ;
// rate_hw_value = (rate_hw_value<=4?0:(rate_hw_value-4));
// SIG_RATE = wifi_mcs_table_phy_tx[rate_hw_value];
SIG_RATE = wifi_mcs_table_11b_force_up[rate_hw_value];
len_2to0 = len & 0x07 ;
len_10to3 = (len >> 3 ) & 0xFF ;
len_msb = (len >> 11) & 0x01 ;
b0=SIG_RATE | (len_2to0 << 5) ;
b1 = len_10to3 ;
header_parity = gen_parity((len_msb << 16)| (b1<<8) | b0) ;
b2 = ( len_msb | (header_parity << 1) ) ;
memset(bytes,0,16);
bytes[0] = b0 ;
bytes[1] = b1 ;
bytes[2] = b2;
//signal_word = b0+(b1<<8)+(b2<<16) ;
//return signal_word;
return(SIG_RATE);
}
static inline struct gpio_led_data * //please align with the implementation in leds-gpio.c
cdev_to_gpio_led_data(struct led_classdev *led_cdev)
{
return container_of(led_cdev, struct gpio_led_data, cdev);
}
static void openwifi_tx(struct ieee80211_hw *dev,
struct ieee80211_tx_control *control,
struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
struct openwifi_priv *priv = dev->priv;
struct openwifi_ring *ring = &(priv->tx_ring);
dma_addr_t dma_mapping_addr;
unsigned long flags;
unsigned int prio, i;
u32 num_dma_symbol, len_mac_pdu, num_dma_byte, len_phy_packet, num_byte_pad;
u32 rate_signal_value,rate_hw_value,ack_flag;
u32 pkt_need_ack, addr1_low32=0, addr2_low32=0, addr3_low32=0, queue_idx=2, ring_len, ring_room_left, dma_reg, cts_reg;//, openofdm_state_history;
u16 addr1_high16=0, addr2_high16=0, addr3_high16=0, sc=0, cts_duration=0, cts_rate_hw_value = 0, cts_rate_signal_value=0, sifs, ack_duration=0, traffic_pkt_duration;
u8 fc_flag,fc_type,fc_subtype,retry_limit_raw,*dma_buf,retry_limit_hw_value,rc_flags;
bool use_rts_cts, use_cts_protect, force_use_cts_protect=false, addr_flag, cts_use_traffic_rate;
__le16 frame_control,duration_id;
// static u32 openofdm_state_history_old=0;
// static bool led_status=0;
// struct gpio_led_data *led_dat = cdev_to_gpio_led_data(priv->led[3]);
// if ( (priv->phy_tx_sn&7) ==0 ) {
// openofdm_state_history = openofdm_rx_api->OPENOFDM_RX_REG_STATE_HISTORY_read();
// if (openofdm_state_history!=openofdm_state_history_old){
// led_status = (~led_status);
// openofdm_state_history_old = openofdm_state_history;
// gpiod_set_value(led_dat->gpiod, led_status);
// }
// }
if (test_mode==1){
printk("%s openwifi_tx: test_mode==1\n", sdr_compatible_str);
goto openwifi_tx_early_out;
}
if (skb->data_len>0)// more data are not in linear data area skb->data
goto openwifi_tx_early_out;
len_mac_pdu = skb->len;
len_phy_packet = len_mac_pdu + LEN_PHY_HEADER;
num_dma_symbol = (len_phy_packet>>TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS) + ((len_phy_packet&(TX_INTF_NUM_BYTE_PER_DMA_SYMBOL-1))!=0);
num_dma_byte = (num_dma_symbol<<TX_INTF_NUM_BYTE_PER_DMA_SYMBOL_IN_BITS);
if (num_dma_byte > TX_BD_BUF_SIZE) {
dev_err(priv->tx_chan->device->dev, "WARNING num_dma_byte > TX_BD_BUF_SIZE\n");
goto openwifi_tx_early_out;
}
num_byte_pad = num_dma_byte-len_phy_packet;
// -----------preprocess some info from header and skb----------------
prio = skb_get_queue_mapping(skb);
if (prio) {
printk("%s openwifi_tx: WARNING prio %d\n", sdr_compatible_str, prio);
}
rate_hw_value = ieee80211_get_tx_rate(dev, info)->hw_value;
addr1_low32 = *((u32*)(hdr->addr1+2));
addr1_high16 = *((u16*)(hdr->addr1));
if (len_mac_pdu>=20) {
addr2_low32 = *((u32*)(hdr->addr2+2));
addr2_high16 = *((u16*)(hdr->addr2));
}
if (len_mac_pdu>=26) {
addr3_low32 = *((u32*)(hdr->addr3+2));
addr3_high16 = *((u16*)(hdr->addr3));
}
if (len_mac_pdu>=28)
sc = hdr->seq_ctrl;
duration_id = hdr->duration_id;
frame_control=hdr->frame_control;
ack_flag = (info->flags&IEEE80211_TX_CTL_NO_ACK);
fc_type = ((frame_control)>>2)&3;
fc_subtype = ((frame_control)>>4)&0xf;
fc_flag = ( fc_type==2 || fc_type==0 || (fc_type==1 && (fc_subtype==8 || fc_subtype==9 || fc_subtype==10) ) );
//if it is broadcasting or multicasting addr
addr_flag = ( (addr1_low32==0 && addr1_high16==0) ||
(addr1_low32==0xFFFFFFFF && addr1_high16==0xFFFF) ||
(addr1_high16==0x3333) ||
(addr1_high16==0x0001 && hdr->addr1[2]==0x5E) );
if ( fc_flag && ( !addr_flag ) && (!ack_flag) ) { // unicast data frame
pkt_need_ack = 1; //FPGA need to wait ACK after this pkt sent
} else {
pkt_need_ack = 0;
}
//rate_hw_value = 10; //4:6M, 5:9M, 6:12M, 7:18M, 8:24M, 9:36M, 10:48M, 11:54M
if (priv->drv_tx_reg_val[0]>0 && fc_type==2 && (!addr_flag))
rate_hw_value = priv->drv_tx_reg_val[0];
// check current packet belonging to which slice/hw-queue
i=0;
if (fc_type==2 && fc_subtype==0 && (!addr_flag)) {
for (; i<MAX_NUM_HW_QUEUE; i++) {
if ( priv->dest_mac_addr_queue_map[i] == addr1_low32 ) {
break;
}
2019-12-10 14:03:47 +01:00
}
}
queue_idx = i;
if (i>=MAX_NUM_HW_QUEUE)
queue_idx = 0;
retry_limit_raw = info->control.rates[0].count;
rc_flags = info->control.rates[0].flags;
use_rts_cts = ((rc_flags&IEEE80211_TX_RC_USE_RTS_CTS)!=0);
use_cts_protect = ((rc_flags&IEEE80211_TX_RC_USE_CTS_PROTECT)!=0);
if (use_rts_cts)
printk("%s openwifi_tx: WARNING use_rts_cts is not supported!\n", sdr_compatible_str);
cts_use_traffic_rate = false;
force_use_cts_protect = false;
if (use_cts_protect) {
cts_rate_hw_value = ieee80211_get_rts_cts_rate(dev, info)->hw_value;
cts_duration = le16_to_cpu(ieee80211_ctstoself_duration(dev,info->control.vif,len_mac_pdu,info));
} else if (force_use_cts_protect) { // could override mac80211 setting here.
cts_rate_hw_value = 4; //wifi_mcs_table_11b_force_up[] translate it to 1011(6M)
sifs = (priv->actual_rx_lo<2500?10:16);
if (pkt_need_ack)
ack_duration = 44;//assume the ack we wait use 6Mbps: 4*ceil((22+14*8)/24) + 20(preamble+SIGNAL)
traffic_pkt_duration = 20 + 4*(((22+len_mac_pdu*8)/wifi_n_dbps_table[rate_hw_value])+1);
cts_duration = traffic_pkt_duration + sifs + pkt_need_ack*(sifs+ack_duration);
}
if ( !addr_flag )
2019-12-10 14:03:47 +01:00
printk("%s openwifi_tx: %4dbytes %2dM FC%04x DI%04x addr1/2/3:%04x%08x/%04x%08x/%04x%08x SC%04x flag%08x retry%d ack%d q%d sn%04d R/CTS %d%d %dM %dus wr/rd %d/%d\n", sdr_compatible_str,
len_mac_pdu, wifi_rate_all[rate_hw_value],frame_control,duration_id,
reverse16(addr1_high16), reverse32(addr1_low32), reverse16(addr2_high16), reverse32(addr2_low32), reverse16(addr3_high16), reverse32(addr3_low32),
sc,info->flags,retry_limit_raw,pkt_need_ack,queue_idx,priv->phy_tx_sn,
use_rts_cts,use_cts_protect|force_use_cts_protect,wifi_rate_all[cts_rate_hw_value],cts_duration,
ring->bd_wr_idx,ring->bd_rd_idx);
// printk("%s openwifi_tx: rate&try: %d %d %03x; %d %d %03x; %d %d %03x; %d %d %03x\n", sdr_compatible_str,
// info->status.rates[0].idx,info->status.rates[0].count,info->status.rates[0].flags,
// info->status.rates[1].idx,info->status.rates[1].count,info->status.rates[1].flags,
// info->status.rates[2].idx,info->status.rates[2].count,info->status.rates[2].flags,
// info->status.rates[3].idx,info->status.rates[3].count,info->status.rates[3].flags);
// this is 11b stuff
// if (info->flags&IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
// printk("%s openwifi_tx: WARNING IEEE80211_TX_RC_USE_SHORT_PREAMBLE\n", sdr_compatible_str);
if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
priv->seqno += 0x10;
hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
hdr->seq_ctrl |= cpu_to_le16(priv->seqno);
}
// -----------end of preprocess some info from header and skb----------------
// /* HW will perform RTS-CTS when only RTS flags is set.
// * HW will perform CTS-to-self when both RTS and CTS flags are set.
// * RTS rate and RTS duration will be used also for CTS-to-self.
// */
// if (rc_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_rts_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_RTS_CTS\n", sdr_compatible_str);
// } else if (rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
// tx_flags |= ieee80211_get_rts_cts_rate(dev, info)->hw_value << 19;
// rts_duration = ieee80211_ctstoself_duration(dev, priv->vif[0], // assume all vif have the same config
// len_mac_pdu, info);
// printk("%s openwifi_tx: rc_flags & IEEE80211_TX_RC_USE_CTS_PROTECT\n", sdr_compatible_str);
// }
// when skb does not have enough headroom, skb_push will cause kernel panic. headroom needs to be extended if necessary
if (skb_headroom(skb)<LEN_PHY_HEADER) {
struct sk_buff *skb_new; // in case original skb headroom is not enough to host phy header needed by FPGA IP core
if ((skb_new = skb_realloc_headroom(skb, LEN_PHY_HEADER)) == NULL) {
printk("%s openwifi_tx: WARNING skb_realloc_headroom failed!\n", sdr_compatible_str);
goto openwifi_tx_early_out;
}
if (skb->sk != NULL)
skb_set_owner_w(skb_new, skb->sk);
dev_kfree_skb(skb);
skb = skb_new;
}
skb_push( skb, LEN_PHY_HEADER );
rate_signal_value = calc_phy_header(rate_hw_value, len_mac_pdu+LEN_PHY_CRC, skb->data); //fill the phy header
//make sure dma length is integer times of DDC_NUM_BYTE_PER_DMA_SYMBOL
if (skb_tailroom(skb)<num_byte_pad) {
printk("%s openwifi_tx: WARNING skb_tailroom(skb)<num_byte_pad!\n", sdr_compatible_str);
goto openwifi_tx_early_out;
}
skb_put( skb, num_byte_pad );
retry_limit_hw_value = (retry_limit_raw - 1)&0xF;
dma_buf = skb->data;
//(*((u16*)(dma_buf+6))) = priv->phy_tx_sn;
//(*((u32*)(dma_buf+8))) = num_dma_byte;
//(*((u32*)(dma_buf+12))) = num_byte_pad;
cts_rate_signal_value = wifi_mcs_table_11b_force_up[cts_rate_hw_value];
cts_reg = (((use_cts_protect|force_use_cts_protect)<<31)|(cts_use_traffic_rate<<30)|(cts_duration<<8)|(cts_rate_signal_value<<4)|rate_signal_value);
dma_reg = ( (( ((priv->phy_tx_sn<<NUM_BIT_MAX_NUM_HW_QUEUE)|queue_idx) )<<18)|(retry_limit_hw_value<<14)|(pkt_need_ack<<13)|num_dma_symbol );
spin_lock_irqsave(&priv->lock, flags); // from now on, we'd better avoid interrupt because wr/rd idx will matter
//ring_len = (ring->bd_wr_idx>=ring->bd_rd_idx)?(ring->bd_wr_idx-ring->bd_rd_idx):(ring->bd_wr_idx+NUM_TX_BD-ring->bd_rd_idx);
ring_len = ((ring->bd_wr_idx-ring->bd_rd_idx)&(NUM_TX_BD-1));
ring_room_left = NUM_TX_BD - ring_len;
if (ring_len>12)
printk("%s openwifi_tx: WARNING ring len %d\n", sdr_compatible_str,ring_len);
// printk("%s openwifi_tx: WARNING ring len %d HW fifo %d q %d\n", sdr_compatible_str,ring_len,tx_intf_api->TX_INTF_REG_S_AXIS_FIFO_DATA_COUNT_read()&0xFFFF, ((tx_intf_api->TX_INTF_REG_PHY_QUEUE_TX_SN_read())>>16)&0xFF );
if (ring_room_left <= 2 && priv->tx_queue_stopped == false) {
ieee80211_stop_queue(dev, prio);
printk("%s openwifi_tx: WARNING ieee80211_stop_queue. ring_room_left %d!\n", sdr_compatible_str,ring_room_left);
priv->tx_queue_stopped = true;
spin_unlock_irqrestore(&priv->lock, flags);
goto openwifi_tx_early_out;
}
/* We must be sure that tx_flags is written last because the HW
* looks at it to check if the rest of data is valid or not
*/
//wmb();
// entry->flags = cpu_to_le32(tx_flags);
/* We must be sure this has been written before followings HW
* register write, because this write will made the HW attempts
* to DMA the just-written data
*/
//wmb();
//__skb_queue_tail(&ring->queue, skb);
//-------------------------fire skb DMA to hardware----------------------------------
dma_mapping_addr = dma_map_single(priv->tx_chan->device->dev, dma_buf,
num_dma_byte, DMA_MEM_TO_DEV);
if (dma_mapping_error(priv->tx_chan->device->dev,dma_mapping_addr)) {
dev_err(priv->tx_chan->device->dev, "WARNING TX DMA mapping error\n");
goto openwifi_tx_skb_drop_out;
}
sg_init_table(&(priv->tx_sg), 1);
sg_dma_address( &(priv->tx_sg) ) = dma_mapping_addr;
sg_dma_len( &(priv->tx_sg) ) = num_dma_byte;
tx_intf_api->TX_INTF_REG_CTS_TOSELF_CONFIG_write(cts_reg);
tx_intf_api->TX_INTF_REG_NUM_DMA_SYMBOL_TO_PL_write(dma_reg);
priv->txd = priv->tx_chan->device->device_prep_slave_sg(priv->tx_chan, &(priv->tx_sg),1,DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT, NULL);
if (!(priv->txd)) {
printk("%s openwifi_tx: WARNING device_prep_slave_sg %d\n", sdr_compatible_str, (u32)(priv->txd));
goto openwifi_tx_after_dma_mapping;
}
//we use interrupt instead of dma callback
priv->txd->callback = 0;
priv->txd->callback_param = 0;
priv->tx_cookie = priv->txd->tx_submit(priv->txd);
if (dma_submit_error(priv->tx_cookie)) {
printk("%s openwifi_tx: WARNING dma_submit_error(tx_cookie) %d\n", sdr_compatible_str, (u32)(priv->tx_cookie));
goto openwifi_tx_after_dma_mapping;
}
// seems everything ok. let's mark this pkt in bd descriptor ring
ring->bds[ring->bd_wr_idx].num_dma_byte=num_dma_byte;
ring->bds[ring->bd_wr_idx].sn=priv->phy_tx_sn;
// ring->bds[ring->bd_wr_idx].hw_queue_idx=queue_idx;
// ring->bds[ring->bd_wr_idx].retry_limit=retry_limit_hw_value;
// ring->bds[ring->bd_wr_idx].need_ack=pkt_need_ack;
ring->bds[ring->bd_wr_idx].skb_linked = skb;
ring->bds[ring->bd_wr_idx].dma_mapping_addr = dma_mapping_addr;
ring->bd_wr_idx = ((ring->bd_wr_idx+1)&(NUM_TX_BD-1));
priv->phy_tx_sn = ( (priv->phy_tx_sn+1)&MAX_PHY_TX_SN );
dma_async_issue_pending(priv->tx_chan);
spin_unlock_irqrestore(&priv->lock, flags);
return;
openwifi_tx_after_dma_mapping:
printk("%s openwifi_tx: WARNING openwifi_tx_after_dma_mapping phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
dma_unmap_single(priv->tx_chan->device->dev, dma_mapping_addr, num_dma_byte, DMA_MEM_TO_DEV);
spin_unlock_irqrestore(&priv->lock, flags);
openwifi_tx_skb_drop_out:
printk("%s openwifi_tx: WARNING openwifi_tx_skb_drop_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
spin_unlock_irqrestore(&priv->lock, flags);
openwifi_tx_early_out:
dev_kfree_skb(skb);
printk("%s openwifi_tx: WARNING openwifi_tx_early_out phy_tx_sn %d queue %d\n", sdr_compatible_str,priv->phy_tx_sn,queue_idx);
}
static int openwifi_start(struct ieee80211_hw *dev)
{
struct openwifi_priv *priv = dev->priv;
int ret, i, rssi_half_db_offset, agc_gain_delay;//rssi_half_db_th,
u32 reg;
for (i=0; i<MAX_NUM_VIF; i++) {
priv->vif[i] = NULL;
}
//turn on radio
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
} else {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
}
if (reg == AD9361_RADIO_ON_TX_ATT) {
priv->rfkill_off = 1;// 0 off, 1 on
printk("%s openwifi_start: rfkill radio on\n",sdr_compatible_str);
}
else
printk("%s openwifi_start: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
priv->ctrl_out.index=0x16;
else
priv->ctrl_out.index=0x17;
ret = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
if (ret < 0) {
printk("%s openwifi_start: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, ret);
} else {
printk("%s openwifi_start: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
}
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
xpu_api->hw_init(priv->xpu_cfg);
agc_gain_delay = 50; //samples
rssi_half_db_offset = 150;
xpu_api->XPU_REG_RSSI_DB_CFG_write(0x80000000|((rssi_half_db_offset<<16)|agc_gain_delay) );
xpu_api->XPU_REG_RSSI_DB_CFG_write((~0x80000000)&((rssi_half_db_offset<<16)|agc_gain_delay) );
openofdm_rx_api->OPENOFDM_RX_REG_POWER_THRES_write(0);
// rssi_half_db_th = 87<<1; // -62dBm // will settup in runtime in _rf_set_channel
// xpu_api->XPU_REG_LBT_TH_write(rssi_half_db_th); // set IQ rssi th step .5dB to xxx and enable it
// // xpu_api->XPU_REG_CSMA_CFG_write(3); // cw_min
// xpu_api->XPU_REG_CSMA_CFG_write(3);
//xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030-238)<<16)|0 );//high 16bit 5GHz; low 16 bit 2.4GHz (Attention, current tx core has around 1.19us starting delay that makes the ack fall behind 10us SIFS in 2.4GHz! Need to improve TX in 2.4GHz!)
xpu_api->XPU_REG_SEND_ACK_WAIT_TOP_write( ((1030)<<16)|0 );//now our tx send out I/Q immediately
2019-12-10 14:03:47 +01:00
xpu_api->XPU_REG_RECV_ACK_COUNT_TOP0_write( (((45+2+2)*200 + 300)<<16) | 200 );//2.4GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
xpu_api->XPU_REG_RECV_ACK_COUNT_TOP1_write( (((51+2+2)*200 + 300)<<16) | 200 );//5GHz. extra 300 clocks are needed when rx core fall into fake ht detection phase (rx mcs 6M)
2019-12-10 14:03:47 +01:00
tx_intf_api->TX_INTF_REG_CTS_TOSELF_WAIT_SIFS_TOP_write( ((16*200)<<16)|(10*200) );//high 16bit 5GHz; low 16 bit 2.4GHz
//xpu_api->XPU_REG_BB_RF_DELAY_write(1020); // fine tuned value at 0.005us. old: dac-->ant port: 0.6us, 57 taps fir at 40MHz: 1.425us; round trip: 2*(0.6+1.425)=4.05us; 4.05*200=810
xpu_api->XPU_REG_BB_RF_DELAY_write(975);//add .5us for slightly longer fir
xpu_api->XPU_REG_MAC_ADDR_write(priv->mac_addr);
xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(50000-1); // total 50ms.
xpu_api->XPU_REG_SLICE_COUNT_START0_write(0); //start 0ms
xpu_api->XPU_REG_SLICE_COUNT_END0_write(50000-1); //end 50ms
xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(50000-1); // total 50ms
xpu_api->XPU_REG_SLICE_COUNT_START1_write(49000); //start 49ms
xpu_api->XPU_REG_SLICE_COUNT_END1_write(50000-1); //end 50ms
//xpu_api->XPU_REG_MAC_ADDR_HIGH_write( (*( (u16*)(priv->mac_addr + 4) )) );
printk("%s openwifi_start: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
printk("%s openwifi_start: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable rx interrupt by interrupt test mode
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
if (test_mode==1) {
printk("%s openwifi_start: test_mode==1\n",sdr_compatible_str);
goto normal_out;
}
priv->rx_chan = dma_request_slave_channel(&(priv->pdev->dev), "rx_dma_s2mm");
if (IS_ERR(priv->rx_chan)) {
ret = PTR_ERR(priv->rx_chan);
pr_err("%s openwifi_start: No Rx channel %d\n",sdr_compatible_str,ret);
goto err_dma;
//goto err_free_reg;
//goto err_free_dev;
}
priv->tx_chan = dma_request_slave_channel(&(priv->pdev->dev), "tx_dma_mm2s");
if (IS_ERR(priv->tx_chan)) {
ret = PTR_ERR(priv->tx_chan);
pr_err("%s openwifi_start: No Tx channel %d\n",sdr_compatible_str,ret);
goto err_dma;
//goto err_free_reg;
//goto err_free_dev;
}
printk("%s openwifi_start: DMA channel setup successfully.\n",sdr_compatible_str);
ret = openwifi_init_rx_ring(priv);
if (ret) {
printk("%s openwifi_start: openwifi_init_rx_ring ret %d\n", sdr_compatible_str,ret);
goto err_free_rings;
}
priv->seqno=0;
priv->phy_tx_sn=0;
if ((ret = openwifi_init_tx_ring(priv))) {
printk("%s openwifi_start: openwifi_init_tx_ring ret %d\n", sdr_compatible_str,ret);
goto err_free_rings;
}
if ( (ret = rx_dma_setup(dev)) ) {
printk("%s openwifi_start: rx_dma_setup ret %d\n", sdr_compatible_str,ret);
goto err_free_rings;
}
priv->irq_rx = irq_of_parse_and_map(priv->pdev->dev.of_node, 1);
ret = request_irq(priv->irq_rx, openwifi_rx_interrupt,
IRQF_SHARED, "sdr,rx_pkt_intr", dev);
if (ret) {
wiphy_err(dev->wiphy, "openwifi_start:failed to register IRQ handler openwifi_rx_interrupt\n");
goto err_free_rings;
} else {
printk("%s openwifi_start: irq_rx %d\n", sdr_compatible_str, priv->irq_rx);
}
priv->irq_tx = irq_of_parse_and_map(priv->pdev->dev.of_node, 3);
ret = request_irq(priv->irq_tx, openwifi_tx_interrupt,
IRQF_SHARED, "sdr,tx_itrpt1", dev);
if (ret) {
wiphy_err(dev->wiphy, "openwifi_start: failed to register IRQ handler openwifi_tx_interrupt\n");
goto err_free_rings;
} else {
printk("%s openwifi_start: irq_tx %d\n", sdr_compatible_str, priv->irq_tx);
}
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x000); // enable rx interrupt get normal fcs valid pass through ddc to ARM
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x40); //enable tx interrupt
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(0); // release M AXIS
xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0); // reset tsf timer
//ieee80211_wake_queue(dev, 0);
normal_out:
printk("%s openwifi_start: normal end\n", sdr_compatible_str);
return 0;
err_free_rings:
openwifi_free_rx_ring(priv);
openwifi_free_tx_ring(priv);
err_dma:
ret = -1;
printk("%s openwifi_start: abnormal end ret %d\n", sdr_compatible_str, ret);
return ret;
}
static void openwifi_stop(struct ieee80211_hw *dev)
{
struct openwifi_priv *priv = dev->priv;
u32 reg, reg1;
int i;
if (test_mode==1){
pr_info("%s openwifi_stop: test_mode==1\n", sdr_compatible_str);
goto normal_out;
}
//turn off radio
#if 1
ad9361_tx_mute(priv->ad9361_phy, 1);
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
priv->rfkill_off = 0;// 0 off, 1 on
printk("%s openwifi_stop: rfkill radio off\n",sdr_compatible_str);
}
else
printk("%s openwifi_stop: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
#endif
//ieee80211_stop_queue(dev, 0);
tx_intf_api->TX_INTF_REG_INTERRUPT_SEL_write(0x30040); //disable tx interrupt
rx_intf_api->RX_INTF_REG_INTERRUPT_TEST_write(0x100); // disable fcs_valid by interrupt test mode
rx_intf_api->RX_INTF_REG_M_AXIS_RST_write(1); // hold M AXIS in reset status
for (i=0; i<MAX_NUM_VIF; i++) {
priv->vif[i] = NULL;
}
openwifi_free_rx_ring(priv);
openwifi_free_tx_ring(priv);
pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->rx_chan));
dmaengine_terminate_all(priv->rx_chan);
dma_release_channel(priv->rx_chan);
pr_info("%s openwifi_stop: dropped channel %s\n", sdr_compatible_str, dma_chan_name(priv->tx_chan));
dmaengine_terminate_all(priv->tx_chan);
dma_release_channel(priv->tx_chan);
//priv->rf->stop(dev);
free_irq(priv->irq_rx, dev);
free_irq(priv->irq_tx, dev);
normal_out:
printk("%s openwifi_stop\n", sdr_compatible_str);
}
static u64 openwifi_get_tsf(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
u32 tsft_low, tsft_high;
tsft_low = xpu_api->XPU_REG_TSF_RUNTIME_VAL_LOW_read();
tsft_high = xpu_api->XPU_REG_TSF_RUNTIME_VAL_HIGH_read();
//printk("%s openwifi_get_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
return( ( (u64)tsft_low ) | ( ((u64)tsft_high)<<32 ) );
}
static void openwifi_set_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u64 tsf)
{
u32 tsft_high = ((tsf >> 32)&0xffffffff);
u32 tsft_low = (tsf&0xffffffff);
xpu_api->XPU_REG_TSF_LOAD_VAL_write(tsft_high,tsft_low);
printk("%s openwifi_set_tsf: %08x%08x\n", sdr_compatible_str,tsft_high,tsft_low);
}
static void openwifi_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
{
xpu_api->XPU_REG_TSF_LOAD_VAL_write(0,0);
printk("%s openwifi_reset_tsf\n", sdr_compatible_str);
}
static int openwifi_set_rts_threshold(struct ieee80211_hw *hw, u32 value)
{
printk("%s openwifi_set_rts_threshold WARNING value %d\n", sdr_compatible_str,value);
return(0);
}
static void openwifi_beacon_work(struct work_struct *work)
{
struct openwifi_vif *vif_priv =
container_of(work, struct openwifi_vif, beacon_work.work);
struct ieee80211_vif *vif =
container_of((void *)vif_priv, struct ieee80211_vif, drv_priv);
struct ieee80211_hw *dev = vif_priv->dev;
struct ieee80211_mgmt *mgmt;
struct sk_buff *skb;
/* don't overflow the tx ring */
if (ieee80211_queue_stopped(dev, 0))
goto resched;
/* grab a fresh beacon */
skb = ieee80211_beacon_get(dev, vif);
if (!skb)
goto resched;
/*
* update beacon timestamp w/ TSF value
* TODO: make hardware update beacon timestamp
*/
mgmt = (struct ieee80211_mgmt *)skb->data;
mgmt->u.beacon.timestamp = cpu_to_le64(openwifi_get_tsf(dev, vif));
/* TODO: use actual beacon queue */
skb_set_queue_mapping(skb, 0);
openwifi_tx(dev, NULL, skb);
resched:
/*
* schedule next beacon
* TODO: use hardware support for beacon timing
*/
schedule_delayed_work(&vif_priv->beacon_work,
usecs_to_jiffies(1024 * vif->bss_conf.beacon_int));
}
static int openwifi_add_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
int i;
struct openwifi_priv *priv = dev->priv;
struct openwifi_vif *vif_priv;
switch (vif->type) {
case NL80211_IFTYPE_AP:
case NL80211_IFTYPE_STATION:
case NL80211_IFTYPE_ADHOC:
case NL80211_IFTYPE_MONITOR:
case NL80211_IFTYPE_MESH_POINT:
break;
default:
return -EOPNOTSUPP;
}
// let's support more than 1 interface
for (i=0; i<MAX_NUM_VIF; i++) {
if (priv->vif[i] == NULL)
break;
}
printk("%s openwifi_add_interface start. vif for loop result %d\n", sdr_compatible_str, i);
if (i==MAX_NUM_VIF)
return -EBUSY;
priv->vif[i] = vif;
/* Initialize driver private area */
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
vif_priv->idx = i;
vif_priv->dev = dev;
INIT_DELAYED_WORK(&vif_priv->beacon_work, openwifi_beacon_work);
vif_priv->enable_beacon = false;
printk("%s openwifi_add_interface end with vif idx %d\n", sdr_compatible_str,vif_priv->idx);
return 0;
}
static void openwifi_remove_interface(struct ieee80211_hw *dev,
struct ieee80211_vif *vif)
{
struct openwifi_vif *vif_priv;
struct openwifi_priv *priv = dev->priv;
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
priv->vif[vif_priv->idx] = NULL;
printk("%s openwifi_remove_interface vif idx %d\n", sdr_compatible_str, vif_priv->idx);
}
static int openwifi_config(struct ieee80211_hw *dev, u32 changed)
{
struct openwifi_priv *priv = dev->priv;
struct ieee80211_conf *conf = &dev->conf;
if (changed & IEEE80211_CONF_CHANGE_CHANNEL)
priv->rf->set_chan(dev, conf);
else
printk("%s openwifi_config changed flag %08x\n", sdr_compatible_str, changed);
return 0;
}
static void openwifi_bss_info_changed(struct ieee80211_hw *dev,
struct ieee80211_vif *vif,
struct ieee80211_bss_conf *info,
u32 changed)
{
struct openwifi_priv *priv = dev->priv;
struct openwifi_vif *vif_priv;
u32 bssid_low, bssid_high;
vif_priv = (struct openwifi_vif *)&vif->drv_priv;
//be careful: we don have valid chip, so registers addresses in priv->map->BSSID[0] are not valid! should not print it!
//printk("%s openwifi_bss_info_changed map bssid %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,priv->map->BSSID[0],priv->map->BSSID[1],priv->map->BSSID[2],priv->map->BSSID[3],priv->map->BSSID[4],priv->map->BSSID[5]);
if (changed & BSS_CHANGED_BSSID) {
printk("%s openwifi_bss_info_changed BSS_CHANGED_BSSID %02x%02x%02x%02x%02x%02x\n",sdr_compatible_str,info->bssid[0],info->bssid[1],info->bssid[2],info->bssid[3],info->bssid[4],info->bssid[5]);
// write new bssid to our HW, and do not change bssid filter
//u32 bssid_filter_high = xpu_api->XPU_REG_BSSID_FILTER_HIGH_read();
bssid_low = ( *( (u32*)(info->bssid) ) );
bssid_high = ( *( (u16*)(info->bssid+4) ) );
//bssid_filter_high = (bssid_filter_high&0x80000000);
//bssid_high = (bssid_high|bssid_filter_high);
xpu_api->XPU_REG_BSSID_FILTER_LOW_write(bssid_low);
xpu_api->XPU_REG_BSSID_FILTER_HIGH_write(bssid_high);
}
if (changed & BSS_CHANGED_BEACON_INT) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_INT %x\n",sdr_compatible_str,info->beacon_int);
}
if (changed & BSS_CHANGED_TXPOWER)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_TXPOWER %x\n",sdr_compatible_str,info->txpower);
if (changed & BSS_CHANGED_ERP_CTS_PROT)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_CTS_PROT %x\n",sdr_compatible_str,info->use_cts_prot);
if (changed & BSS_CHANGED_BASIC_RATES)
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BASIC_RATES %x\n",sdr_compatible_str,info->basic_rates);
if (changed & (BSS_CHANGED_ERP_SLOT | BSS_CHANGED_ERP_PREAMBLE)) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_ERP_SLOT %d BSS_CHANGED_ERP_PREAMBLE %d short slot %d\n",sdr_compatible_str,
changed&BSS_CHANGED_ERP_SLOT,changed&BSS_CHANGED_ERP_PREAMBLE,info->use_short_slot);
if (info->use_short_slot && priv->use_short_slot==false) {
priv->use_short_slot=true;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
} else if ((!info->use_short_slot) && priv->use_short_slot==true) {
priv->use_short_slot=false;
xpu_api->XPU_REG_BAND_CHANNEL_write( (priv->use_short_slot<<24)|(priv->band<<16) );
}
}
if (changed & BSS_CHANGED_BEACON_ENABLED) {
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED\n",sdr_compatible_str);
vif_priv->enable_beacon = info->enable_beacon;
}
if (changed & (BSS_CHANGED_BEACON_ENABLED | BSS_CHANGED_BEACON)) {
cancel_delayed_work_sync(&vif_priv->beacon_work);
if (vif_priv->enable_beacon)
schedule_work(&vif_priv->beacon_work.work);
printk("%s openwifi_bss_info_changed WARNING BSS_CHANGED_BEACON_ENABLED %d BSS_CHANGED_BEACON %d\n",sdr_compatible_str,
changed&BSS_CHANGED_BEACON_ENABLED,changed&BSS_CHANGED_BEACON);
}
}
static int openwifi_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
const struct ieee80211_tx_queue_params *params)
{
printk("%s openwifi_conf_tx: WARNING [queue %d], aifs: %d, cw_min: %d, cw_max: %d, txop: %d\n",
sdr_compatible_str,queue,params->aifs,params->cw_min,params->cw_max,params->txop);
return(0);
}
static u64 openwifi_prepare_multicast(struct ieee80211_hw *dev,
struct netdev_hw_addr_list *mc_list)
{
printk("%s openwifi_prepare_multicast\n", sdr_compatible_str);
return netdev_hw_addr_list_count(mc_list);
}
static void openwifi_configure_filter(struct ieee80211_hw *dev,
unsigned int changed_flags,
unsigned int *total_flags,
u64 multicast)
{
u32 filter_flag;
(*total_flags) &= SDR_SUPPORTED_FILTERS;
// (*total_flags) |= FIF_ALLMULTI; //because we always pass all multicast (no matter it is for us or not) to upper layer
filter_flag = (*total_flags);
filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO);
//filter_flag = (filter_flag|UNICAST_FOR_US|BROADCAST_ALL_ONE|BROADCAST_ALL_ZERO|MONITOR_ALL); // all pkt will be delivered to arm
//if (priv->vif[0]->type == NL80211_IFTYPE_MONITOR)
if ((filter_flag&0xf0) == 0xf0) //FIF_BCN_PRBRESP_PROMISC/FIF_CONTROL/FIF_OTHER_BSS/FIF_PSPOLL are set means monitor mode
2019-12-10 14:03:47 +01:00
filter_flag = (filter_flag|MONITOR_ALL);
else
filter_flag = (filter_flag&(~MONITOR_ALL));
2019-12-10 14:03:47 +01:00
if ( !(filter_flag&FIF_BCN_PRBRESP_PROMISC) )
2019-12-10 14:03:47 +01:00
filter_flag = (filter_flag|MY_BEACON);
filter_flag = (filter_flag|FIF_PSPOLL);
2019-12-10 14:03:47 +01:00
xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag|HIGH_PRIORITY_DISCARD_FLAG);
//xpu_api->XPU_REG_FILTER_FLAG_write(filter_flag); //do not discard any pkt
printk("%s openwifi_configure_filter MON %d M_BCN %d BST0 %d BST1 %d UST %d PB_RQ %d PS_PL %d O_BSS %d CTL %d BCN_PRP %d PCP_FL %d FCS_FL %d ALL_MUT %d\n", sdr_compatible_str,
(filter_flag>>13)&1,(filter_flag>>12)&1,(filter_flag>>11)&1,(filter_flag>>10)&1,(filter_flag>>9)&1,(filter_flag>>8)&1,(filter_flag>>7)&1,(filter_flag>>6)&1,(filter_flag>>5)&1,(filter_flag>>4)&1,(filter_flag>>3)&1,(filter_flag>>2)&1,(filter_flag>>1)&1);
}
static int openwifi_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif, void *data, int len)
{
struct openwifi_priv *priv = hw->priv;
struct nlattr *tb[OPENWIFI_ATTR_MAX + 1];
struct sk_buff *skb;
int err;
u32 tmp=-1, reg_cat, reg_addr, reg_val, reg_addr_idx;
err = nla_parse(tb, OPENWIFI_ATTR_MAX, data, len, openwifi_testmode_policy, NULL);
if (err)
return err;
if (!tb[OPENWIFI_ATTR_CMD])
return -EINVAL;
switch (nla_get_u32(tb[OPENWIFI_ATTR_CMD])) {
case OPENWIFI_CMD_SET_GAP:
if (!tb[OPENWIFI_ATTR_GAP])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_GAP]);
printk("%s openwifi radio inter frame gap set to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_CSMA_CFG_write(tmp); // unit us
return 0;
case OPENWIFI_CMD_GET_GAP:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = xpu_api->XPU_REG_CSMA_CFG_read();
if (nla_put_u32(skb, OPENWIFI_ATTR_GAP, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_ADDR0:
if (!tb[OPENWIFI_ATTR_ADDR0])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR0]);
printk("%s set openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
priv->dest_mac_addr_queue_map[0] = reverse32(tmp);
return 0;
case OPENWIFI_CMD_GET_ADDR0:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = reverse32(priv->dest_mac_addr_queue_map[0]);
if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR0, tmp))
goto nla_put_failure;
printk("%s get openwifi slice0_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_ADDR1:
if (!tb[OPENWIFI_ATTR_ADDR1])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_ADDR1]);
printk("%s set openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
priv->dest_mac_addr_queue_map[1] = reverse32(tmp);
return 0;
case OPENWIFI_CMD_GET_ADDR1:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = reverse32(priv->dest_mac_addr_queue_map[1]);
if (nla_put_u32(skb, OPENWIFI_ATTR_ADDR1, tmp))
goto nla_put_failure;
printk("%s get openwifi slice1_target_mac_addr(low32) in hex: %08x\n", sdr_compatible_str, tmp);
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_TOTAL0:
if (!tb[OPENWIFI_ATTR_SLICE_TOTAL0])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL0]);
printk("%s set SLICE_TOTAL0(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_TOTAL0:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL0_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL0, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_START0:
if (!tb[OPENWIFI_ATTR_SLICE_START0])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START0]);
printk("%s set SLICE_START0(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_START0_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_START0:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_START0_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START0, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_END0:
if (!tb[OPENWIFI_ATTR_SLICE_END0])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END0]);
printk("%s set SLICE_END0(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_END0_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_END0:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_END0_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END0, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_TOTAL1:
if (!tb[OPENWIFI_ATTR_SLICE_TOTAL1])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_TOTAL1]);
printk("%s set SLICE_TOTAL1(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_TOTAL1:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_TOTAL1_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_TOTAL1, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_START1:
if (!tb[OPENWIFI_ATTR_SLICE_START1])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_START1]);
printk("%s set SLICE_START1(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_START1_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_START1:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_START1_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_START1, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_SLICE_END1:
if (!tb[OPENWIFI_ATTR_SLICE_END1])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_SLICE_END1]);
printk("%s set SLICE_END1(duration) to %d usec\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_SLICE_COUNT_END1_write(tmp);
return 0;
case OPENWIFI_CMD_GET_SLICE_END1:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = (xpu_api->XPU_REG_SLICE_COUNT_END1_read());
if (nla_put_u32(skb, OPENWIFI_ATTR_SLICE_END1, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case OPENWIFI_CMD_SET_RSSI_TH:
if (!tb[OPENWIFI_ATTR_RSSI_TH])
return -EINVAL;
tmp = nla_get_u32(tb[OPENWIFI_ATTR_RSSI_TH]);
printk("%s set RSSI_TH to %d\n", sdr_compatible_str, tmp);
xpu_api->XPU_REG_LBT_TH_write(tmp);
return 0;
case OPENWIFI_CMD_GET_RSSI_TH:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
tmp = xpu_api->XPU_REG_LBT_TH_read();
if (nla_put_u32(skb, OPENWIFI_ATTR_RSSI_TH, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
case REG_CMD_SET:
if ( (!tb[REG_ATTR_ADDR]) || (!tb[REG_ATTR_VAL]) )
return -EINVAL;
reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
reg_val = nla_get_u32(tb[REG_ATTR_VAL]);
reg_cat = ((reg_addr>>16)&0xFFFF);
reg_addr = (reg_addr&0xFFFF);
reg_addr_idx = (reg_addr>>2);
printk("%s recv set cmd reg cat %d addr %08x val %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_val, reg_addr_idx);
if (reg_cat==1)
printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
else if (reg_cat==2)
rx_intf_api->reg_write(reg_addr,reg_val);
else if (reg_cat==3)
tx_intf_api->reg_write(reg_addr,reg_val);
else if (reg_cat==4)
openofdm_rx_api->reg_write(reg_addr,reg_val);
else if (reg_cat==5)
openofdm_tx_api->reg_write(reg_addr,reg_val);
else if (reg_cat==6)
xpu_api->reg_write(reg_addr,reg_val);
else if (reg_cat==7) {
priv->drv_rx_reg_val[reg_addr_idx]=reg_val;
if (reg_addr_idx==1) {
if (reg_val==0)
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
else
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
}
}
else if (reg_cat==8) {
priv->drv_tx_reg_val[reg_addr_idx]=reg_val;
if (reg_addr_idx==1) {
if (reg_val==0) {
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true);
} else {
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true);
}
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
}
}
else if (reg_cat==9) {
priv->drv_xpu_reg_val[reg_addr_idx]=reg_val;
}
else
printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
return 0;
case REG_CMD_GET:
skb = cfg80211_testmode_alloc_reply_skb(hw->wiphy, nla_total_size(sizeof(u32)));
if (!skb)
return -ENOMEM;
reg_addr = nla_get_u32(tb[REG_ATTR_ADDR]);
reg_cat = ((reg_addr>>16)&0xFFFF);
reg_addr = (reg_addr&0xFFFF);
reg_addr_idx = (reg_addr>>2);
printk("%s recv get cmd reg cat %d addr %08x idx %d\n", sdr_compatible_str, reg_cat, reg_addr, reg_addr_idx);
if (reg_cat==1) {
printk("%s reg cat 1 (rf) is not supported yet!\n", sdr_compatible_str);
tmp = 0xFFFFFFFF;
}
else if (reg_cat==2)
tmp = rx_intf_api->reg_read(reg_addr);
else if (reg_cat==3)
tmp = tx_intf_api->reg_read(reg_addr);
else if (reg_cat==4)
tmp = openofdm_rx_api->reg_read(reg_addr);
else if (reg_cat==5)
tmp = openofdm_tx_api->reg_read(reg_addr);
else if (reg_cat==6)
tmp = xpu_api->reg_read(reg_addr);
else if (reg_cat==7) {
if (reg_addr_idx==1) {
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
//priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT0)
priv->drv_rx_reg_val[reg_addr_idx]=0;
else if (priv->rx_intf_cfg == RX_INTF_BW_20MHZ_AT_0MHZ_ANT1)
priv->drv_rx_reg_val[reg_addr_idx]=1;
}
tmp = priv->drv_rx_reg_val[reg_addr_idx];
}
else if (reg_cat==8) {
if (reg_addr_idx==1) {
//priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0)
priv->drv_tx_reg_val[reg_addr_idx]=0;
else if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1)
priv->drv_tx_reg_val[reg_addr_idx]=1;
}
tmp = priv->drv_tx_reg_val[reg_addr_idx];
}
else if (reg_cat==9) {
tmp = priv->drv_xpu_reg_val[reg_addr_idx];
}
else
printk("%s reg cat %d is not supported yet!\n", sdr_compatible_str, reg_cat);
if (nla_put_u32(skb, REG_ATTR_VAL, tmp))
goto nla_put_failure;
return cfg80211_testmode_reply(skb);
default:
return -EOPNOTSUPP;
}
nla_put_failure:
dev_kfree_skb(skb);
return -ENOBUFS;
}
static const struct ieee80211_ops openwifi_ops = {
.tx = openwifi_tx,
.start = openwifi_start,
.stop = openwifi_stop,
.add_interface = openwifi_add_interface,
.remove_interface = openwifi_remove_interface,
.config = openwifi_config,
.bss_info_changed = openwifi_bss_info_changed,
.conf_tx = openwifi_conf_tx,
.prepare_multicast = openwifi_prepare_multicast,
.configure_filter = openwifi_configure_filter,
.rfkill_poll = openwifi_rfkill_poll,
.get_tsf = openwifi_get_tsf,
.set_tsf = openwifi_set_tsf,
.reset_tsf = openwifi_reset_tsf,
.set_rts_threshold = openwifi_set_rts_threshold,
.testmode_cmd = openwifi_testmode_cmd,
};
static const struct of_device_id openwifi_dev_of_ids[] = {
{ .compatible = "sdr,sdr", },
{}
};
MODULE_DEVICE_TABLE(of, openwifi_dev_of_ids);
static int custom_match_spi_dev(struct device *dev, void *data)
{
const char *name = data;
bool ret = sysfs_streq(name, dev->of_node->name);
printk("%s custom_match_spi_dev %s %s %d\n", sdr_compatible_str,name, dev->of_node->name, ret);
return ret;
}
static int custom_match_platform_dev(struct device *dev, void *data)
{
struct platform_device *plat_dev = to_platform_device(dev);
const char *name = data;
char *name_in_sys_bus_platform_devices = strstr(plat_dev->name, name);
bool match_flag = (name_in_sys_bus_platform_devices != NULL);
if (match_flag) {
printk("%s custom_match_platform_dev %s\n", sdr_compatible_str,plat_dev->name);
}
return(match_flag);
}
static int openwifi_dev_probe(struct platform_device *pdev)
{
struct ieee80211_hw *dev;
struct openwifi_priv *priv;
int err=1, rand_val;
const char *chip_name;
u32 reg;//, reg1;
struct device_node *np = pdev->dev.of_node;
struct device *tmp_dev;
struct platform_device *tmp_pdev;
struct iio_dev *tmp_indio_dev;
// struct gpio_leds_priv *tmp_led_priv;
printk("\n");
if (np) {
const struct of_device_id *match;
match = of_match_node(openwifi_dev_of_ids, np);
if (match) {
printk("%s openwifi_dev_probe: match!\n", sdr_compatible_str);
err = 0;
}
}
if (err)
return err;
dev = ieee80211_alloc_hw(sizeof(*priv), &openwifi_ops);
if (!dev) {
printk(KERN_ERR "%s openwifi_dev_probe: ieee80211 alloc failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv = dev->priv;
priv->pdev = pdev;
// //-------------find ad9361-phy driver for lo/channel control---------------
priv->actual_rx_lo = 0;
tmp_dev = bus_find_device( &spi_bus_type, NULL, "ad9361-phy", custom_match_spi_dev );
if (!tmp_dev) {
printk(KERN_ERR "%s find_dev ad9361-phy failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv->ad9361_phy = ad9361_spi_to_phy((struct spi_device*)tmp_dev);
if (!(priv->ad9361_phy)) {
printk(KERN_ERR "%s ad9361_spi_to_phy failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv->ctrl_out.en_mask=0xFF;
priv->ctrl_out.index=0x16;
err = ad9361_ctrl_outs_setup(priv->ad9361_phy, &(priv->ctrl_out));
if (err < 0) {
printk("%s openwifi_dev_probe: WARNING ad9361_ctrl_outs_setup %d\n",sdr_compatible_str, err);
} else {
printk("%s openwifi_dev_probe: ad9361_ctrl_outs_setup en_mask 0x%02x index 0x%02x\n",sdr_compatible_str, priv->ctrl_out.en_mask, priv->ctrl_out.index);
}
reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_POINTER);
printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_POINTER 0x%02x\n",sdr_compatible_str, reg);
reg = ad9361_spi_read(priv->ad9361_phy->spi, REG_CTRL_OUTPUT_ENABLE);
printk("%s openwifi_dev_probe: ad9361_spi_read REG_CTRL_OUTPUT_ENABLE 0x%02x\n",sdr_compatible_str, reg);
// //-------------find driver: axi_ad9361 hdl ref design module, dac channel---------------
tmp_dev = bus_find_device( &platform_bus_type, NULL, "cf-ad9361-dds-core-lpc", custom_match_platform_dev );
if (!tmp_dev) {
printk(KERN_ERR "%s bus_find_device platform_bus_type cf-ad9361-dds-core-lpc failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
tmp_pdev = to_platform_device(tmp_dev);
if (!tmp_pdev) {
printk(KERN_ERR "%s to_platform_device failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
tmp_indio_dev = platform_get_drvdata(tmp_pdev);
if (!tmp_indio_dev) {
printk(KERN_ERR "%s platform_get_drvdata failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
priv->dds_st = iio_priv(tmp_indio_dev);
if (!(priv->dds_st)) {
printk(KERN_ERR "%s iio_priv failed\n",sdr_compatible_str);
err = -ENOMEM;
goto err_free_dev;
}
printk("%s openwifi_dev_probe: cf-ad9361-dds-core-lpc dds_st->version %08x chip_info->name %s\n",sdr_compatible_str,priv->dds_st->version,priv->dds_st->chip_info->name);
cf_axi_dds_datasel(priv->dds_st, -1, DATA_SEL_DMA);
printk("%s openwifi_dev_probe: cf_axi_dds_datasel DATA_SEL_DMA\n",sdr_compatible_str);
// //-------------find driver: axi_ad9361 hdl ref design module, adc channel---------------
// turn off radio by muting tx
// ad9361_tx_mute(priv->ad9361_phy, 1);
// reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
// reg1 = ad9361_get_tx_atten(priv->ad9361_phy, 1);
// if (reg == AD9361_RADIO_OFF_TX_ATT && reg1 == AD9361_RADIO_OFF_TX_ATT ) {
// priv->rfkill_off = 0;// 0 off, 1 on
// printk("%s openwifi_dev_probe: rfkill radio off\n",sdr_compatible_str);
// }
// else
// printk("%s openwifi_dev_probe: WARNING rfkill radio off failed. tx att read %d %d require %d\n",sdr_compatible_str, reg, reg1, AD9361_RADIO_OFF_TX_ATT);
priv->rssi_correction = 43;//this will be set in real-time by _rf_set_channel()
//priv->rf_bw = 20000000; // Signal quality issue! NOT use for now. 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv->rf_bw = 40000000; // 20MHz or 40MHz. 40MHz need ddc/duc. 20MHz works in bypass mode
priv->xpu_cfg = XPU_NORMAL;
priv->openofdm_tx_cfg = OPENOFDM_TX_NORMAL;
priv->openofdm_rx_cfg = OPENOFDM_RX_NORMAL;
printk("%s openwifi_dev_probe: priv->rf_bw == %dHz. bool for 20000000 %d, 40000000 %d\n",sdr_compatible_str, priv->rf_bw, (priv->rf_bw==20000000) , (priv->rf_bw==40000000) );
if (priv->rf_bw == 20000000) {
priv->rx_intf_cfg = RX_INTF_BYPASS;
priv->tx_intf_cfg = TX_INTF_BYPASS;
//priv->rx_freq_offset_to_lo_MHz = 0;
//priv->tx_freq_offset_to_lo_MHz = 0;
} else if (priv->rf_bw == 40000000) {
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_P_10MHZ; //work
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1; //work
// // test ddc at central, duc at central+10M. It works. And also change rx BW from 40MHz to 20MHz in rf_init.sh. Rx sampling rate is still 40Msps
priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT0;
priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1;
// // try another antenna option
//priv->rx_intf_cfg = RX_INTF_BW_20MHZ_AT_0MHZ_ANT1;
//priv->tx_intf_cfg = TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT0;
#if 0
if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_N_10MHZ) {
priv->rx_freq_offset_to_lo_MHz = -10;
} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_P_10MHZ) {
priv->rx_freq_offset_to_lo_MHz = 10;
} else if (priv->rx_intf_cfg == DDC_BW_20MHZ_AT_0MHZ) {
priv->rx_freq_offset_to_lo_MHz = 0;
} else {
printk("%s openwifi_dev_probe: Warning! priv->rx_intf_cfg == %d\n",sdr_compatible_str,priv->rx_intf_cfg);
}
#endif
} else {
printk("%s openwifi_dev_probe: Warning! priv->rf_bw == %dHz (should be 20000000 or 40000000)\n",sdr_compatible_str, priv->rf_bw);
}
priv->rx_freq_offset_to_lo_MHz = rx_intf_fo_mapping[priv->rx_intf_cfg];
priv->tx_freq_offset_to_lo_MHz = tx_intf_fo_mapping[priv->tx_intf_cfg];
printk("%s openwifi_dev_probe: test_mode %d\n", sdr_compatible_str, test_mode);
//let's by default turn radio on when probing
if (priv->tx_intf_cfg == TX_INTF_BW_20MHZ_AT_N_10MHZ_ANT1) {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, false, true, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 2);
} else {
ad9361_set_tx_atten(priv->ad9361_phy, AD9361_RADIO_ON_TX_ATT, true, false, true); // AD9361_RADIO_ON_TX_ATT 3000 means 3dB, 0 means 0dB
reg = ad9361_get_tx_atten(priv->ad9361_phy, 1);
}
if (reg == AD9361_RADIO_ON_TX_ATT) {
priv->rfkill_off = 1;// 0 off, 1 on
printk("%s openwifi_dev_probe: rfkill radio on\n",sdr_compatible_str);
}
else
printk("%s openwifi_dev_probe: WARNING rfkill radio on failed. tx att read %d require %d\n",sdr_compatible_str, reg, AD9361_RADIO_ON_TX_ATT);
memset(priv->drv_rx_reg_val,0,sizeof(priv->drv_rx_reg_val));
memset(priv->drv_tx_reg_val,0,sizeof(priv->drv_tx_reg_val));
memset(priv->drv_xpu_reg_val,0,sizeof(priv->drv_xpu_reg_val));
// //set ad9361 in certain mode
#if 0
err = ad9361_set_trx_clock_chain_freq(priv->ad9361_phy,priv->rf_bw);
printk("%s openwifi_dev_probe: ad9361_set_trx_clock_chain_freq %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
err = ad9361_update_rf_bandwidth(priv->ad9361_phy,priv->rf_bw,priv->rf_bw);
printk("%s openwifi_dev_probe: ad9361_update_rf_bandwidth %dHz err %d\n",sdr_compatible_str, priv->rf_bw,err);
rx_intf_api->hw_init(priv->rx_intf_cfg,8,8);
tx_intf_api->hw_init(priv->tx_intf_cfg,8,8);
openofdm_tx_api->hw_init(priv->openofdm_tx_cfg);
openofdm_rx_api->hw_init(priv->openofdm_rx_cfg);
printk("%s openwifi_dev_probe: rx_intf_cfg %d openofdm_rx_cfg %d tx_intf_cfg %d openofdm_tx_cfg %d\n",sdr_compatible_str, priv->rx_intf_cfg, priv->openofdm_rx_cfg, priv->tx_intf_cfg, priv->openofdm_tx_cfg);
printk("%s openwifi_dev_probe: rx_freq_offset_to_lo_MHz %d tx_freq_offset_to_lo_MHz %d\n",sdr_compatible_str, priv->rx_freq_offset_to_lo_MHz, priv->tx_freq_offset_to_lo_MHz);
#endif
dev->max_rates = 1; //maximum number of alternate rate retry stages the hw can handle.
SET_IEEE80211_DEV(dev, &pdev->dev);
platform_set_drvdata(pdev, dev);
BUILD_BUG_ON(sizeof(priv->rates_2GHz) != sizeof(openwifi_2GHz_rates));
BUILD_BUG_ON(sizeof(priv->rates_5GHz) != sizeof(openwifi_5GHz_rates));
BUILD_BUG_ON(sizeof(priv->channels_2GHz) != sizeof(openwifi_2GHz_channels));
BUILD_BUG_ON(sizeof(priv->channels_5GHz) != sizeof(openwifi_5GHz_channels));
memcpy(priv->rates_2GHz, openwifi_2GHz_rates, sizeof(openwifi_2GHz_rates));
memcpy(priv->rates_5GHz, openwifi_5GHz_rates, sizeof(openwifi_5GHz_rates));
memcpy(priv->channels_2GHz, openwifi_2GHz_channels, sizeof(openwifi_2GHz_channels));
memcpy(priv->channels_5GHz, openwifi_5GHz_channels, sizeof(openwifi_5GHz_channels));
priv->band = BAND_5_8GHZ; //this can be changed by band _rf_set_channel() (2.4GHz ERP(OFDM)) (5GHz OFDM)
priv->channel = 44; //currently useless. this can be changed by band _rf_set_channel()
priv->use_short_slot = false; //this can be changed by openwifi_bss_info_changed: BSS_CHANGED_ERP_SLOT
priv->band_2GHz.band = NL80211_BAND_2GHZ;
priv->band_2GHz.channels = priv->channels_2GHz;
priv->band_2GHz.n_channels = ARRAY_SIZE(priv->channels_2GHz);
priv->band_2GHz.bitrates = priv->rates_2GHz;
priv->band_2GHz.n_bitrates = ARRAY_SIZE(priv->rates_2GHz);
dev->wiphy->bands[NL80211_BAND_2GHZ] = &(priv->band_2GHz);
priv->band_5GHz.band = NL80211_BAND_5GHZ;
priv->band_5GHz.channels = priv->channels_5GHz;
priv->band_5GHz.n_channels = ARRAY_SIZE(priv->channels_5GHz);
priv->band_5GHz.bitrates = priv->rates_5GHz;
priv->band_5GHz.n_bitrates = ARRAY_SIZE(priv->rates_5GHz);
dev->wiphy->bands[NL80211_BAND_5GHZ] = &(priv->band_5GHz);
printk("%s openwifi_dev_probe: band_2GHz.n_channels %d n_bitrates %d band_5GHz.n_channels %d n_bitrates %d\n",sdr_compatible_str,
priv->band_2GHz.n_channels,priv->band_2GHz.n_bitrates,priv->band_5GHz.n_channels,priv->band_5GHz.n_bitrates);
ieee80211_hw_set(dev, HOST_BROADCAST_PS_BUFFERING);
ieee80211_hw_set(dev, RX_INCLUDES_FCS);
ieee80211_hw_set(dev, BEACON_TX_STATUS);
dev->vif_data_size = sizeof(struct openwifi_vif);
dev->wiphy->interface_modes =
BIT(NL80211_IFTYPE_MONITOR)|
BIT(NL80211_IFTYPE_P2P_GO) |
BIT(NL80211_IFTYPE_P2P_CLIENT) |
BIT(NL80211_IFTYPE_AP) |
BIT(NL80211_IFTYPE_STATION) |
BIT(NL80211_IFTYPE_ADHOC) |
BIT(NL80211_IFTYPE_MESH_POINT) |
BIT(NL80211_IFTYPE_OCB);
dev->wiphy->iface_combinations = &openwifi_if_comb;
dev->wiphy->n_iface_combinations = 1;
dev->wiphy->regulatory_flags = (REGULATORY_STRICT_REG|REGULATORY_CUSTOM_REG); // use our own config within strict regulation
//dev->wiphy->regulatory_flags = REGULATORY_CUSTOM_REG; // use our own config
wiphy_apply_custom_regulatory(dev->wiphy, &sdr_regd);
chip_name = "ZYNQ";
/* we declare to MAC80211 all the queues except for beacon queue
* that will be eventually handled by DRV.
* TX rings are arranged in such a way that lower is the IDX,
* higher is the priority, in order to achieve direct mapping
* with mac80211, however the beacon queue is an exception and it
* is mapped on the highst tx ring IDX.
*/
dev->queues = 1;
ieee80211_hw_set(dev, SIGNAL_DBM);
wiphy_ext_feature_set(dev->wiphy, NL80211_EXT_FEATURE_CQM_RSSI_LIST);
priv->rf = &ad9361_rf_ops;
memset(priv->dest_mac_addr_queue_map,0,sizeof(priv->dest_mac_addr_queue_map));
get_random_bytes(&rand_val, sizeof(rand_val));
rand_val%=250;
priv->mac_addr[0]=0x66; priv->mac_addr[1]=0x55; priv->mac_addr[2]=0x44; priv->mac_addr[3]=0x33; priv->mac_addr[4]=0x22;
priv->mac_addr[5]=rand_val+1;
//priv->mac_addr[5]=0x11;
if (!is_valid_ether_addr(priv->mac_addr)) {
printk(KERN_WARNING "%s openwifi_dev_probe: WARNING Invalid hwaddr! Using randomly generated MAC addr\n",sdr_compatible_str);
eth_random_addr(priv->mac_addr);
} else {
printk("%s openwifi_dev_probe: mac_addr %02x:%02x:%02x:%02x:%02x:%02x\n",sdr_compatible_str,priv->mac_addr[0],priv->mac_addr[1],priv->mac_addr[2],priv->mac_addr[3],priv->mac_addr[4],priv->mac_addr[5]);
}
SET_IEEE80211_PERM_ADDR(dev, priv->mac_addr);
spin_lock_init(&priv->lock);
err = ieee80211_register_hw(dev);
if (err) {
pr_err(KERN_ERR "%s openwifi_dev_probe: WARNING Cannot register device\n",sdr_compatible_str);
goto err_free_dev;
} else {
printk("%s openwifi_dev_probe: ieee80211_register_hw %d\n",sdr_compatible_str, err);
}
// // //--------------------hook leds (not complete yet)--------------------------------
// tmp_dev = bus_find_device( &platform_bus_type, NULL, "leds", custom_match_platform_dev ); //leds is the name in devicetree, not "compatiable" field
// if (!tmp_dev) {
// printk(KERN_ERR "%s bus_find_device platform_bus_type leds-gpio failed\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_pdev = to_platform_device(tmp_dev);
// if (!tmp_pdev) {
// printk(KERN_ERR "%s to_platform_device failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// tmp_led_priv = platform_get_drvdata(tmp_pdev);
// if (!tmp_led_priv) {
// printk(KERN_ERR "%s platform_get_drvdata failed for leds-gpio\n",sdr_compatible_str);
// err = -ENOMEM;
// goto err_free_dev;
// }
// printk("%s openwifi_dev_probe: leds-gpio detect %d leds!\n",sdr_compatible_str, tmp_led_priv->num_leds);
// if (tmp_led_priv->num_leds!=4){
// printk(KERN_ERR "%s WARNING we expect 4 leds, but actual %d leds\n",sdr_compatible_str,tmp_led_priv->num_leds);
// err = -ENOMEM;
// goto err_free_dev;
// }
// gpiod_set_value(tmp_led_priv->leds[0].gpiod, 1);//light it
// gpiod_set_value(tmp_led_priv->leds[3].gpiod, 0);//black it
// priv->num_led = tmp_led_priv->num_leds;
// priv->led[0] = &(tmp_led_priv->leds[0].cdev);
// priv->led[1] = &(tmp_led_priv->leds[1].cdev);
// priv->led[2] = &(tmp_led_priv->leds[2].cdev);
// priv->led[3] = &(tmp_led_priv->leds[3].cdev);
// snprintf(priv->led_name[0], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::radio", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[1], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::assoc", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[2], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::tx", wiphy_name(dev->wiphy));
// snprintf(priv->led_name[3], OPENWIFI_LED_MAX_NAME_LEN, "openwifi-%s::rx", wiphy_name(dev->wiphy));
wiphy_info(dev->wiphy, "hwaddr %pm, %s + %s\n",
priv->mac_addr, chip_name, priv->rf->name);
openwifi_rfkill_init(dev);
return 0;
err_free_dev:
ieee80211_free_hw(dev);
return err;
}
static int openwifi_dev_remove(struct platform_device *pdev)
{
struct ieee80211_hw *dev = platform_get_drvdata(pdev);
if (!dev) {
pr_info("%s openwifi_dev_remove: dev %d\n", sdr_compatible_str, (u32)dev);
return(-1);
}
openwifi_rfkill_exit(dev);
ieee80211_unregister_hw(dev);
ieee80211_free_hw(dev);
return(0);
}
static struct platform_driver openwifi_dev_driver = {
.driver = {
.name = "sdr,sdr",
.owner = THIS_MODULE,
.of_match_table = openwifi_dev_of_ids,
},
.probe = openwifi_dev_probe,
.remove = openwifi_dev_remove,
};
module_platform_driver(openwifi_dev_driver);