mirror of
https://github.com/jhshi/openofdm.git
synced 2025-06-14 05:08:16 +00:00
scripts init
This commit is contained in:
76
scripts/commpy/channelcoding/__init__.py
Normal file
76
scripts/commpy/channelcoding/__init__.py
Normal file
@ -0,0 +1,76 @@
|
||||
"""
|
||||
============================================
|
||||
Channel Coding (:mod:`commpy.channelcoding`)
|
||||
============================================
|
||||
|
||||
.. module:: commpy.channelcoding
|
||||
|
||||
Galois Fields
|
||||
=============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
GF -- Class representing a Galois Field object.
|
||||
|
||||
Algebraic Codes
|
||||
===============
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
cyclic_code_genpoly -- Generate a cylic code generator polynomial.
|
||||
|
||||
|
||||
Convolutional Codes
|
||||
===================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
Trellis -- Class representing convolutional code trellis.
|
||||
conv_encode -- Convolutional Encoder.
|
||||
viterbi_decode -- Convolutional Decoder using the Viterbi algorithm.
|
||||
|
||||
|
||||
Turbo Codes
|
||||
===========
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
turbo_encode -- Turbo Encoder.
|
||||
map_decode -- Convolutional Code decoder using MAP algorithm.
|
||||
turbo_decode -- Turbo Decoder.
|
||||
|
||||
LDPC Codes
|
||||
==========
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
get_ldpc_code_params -- Extract parameters from LDPC code design file.
|
||||
ldpc_bp_decode -- LDPC Code Decoder using Belief propagation.
|
||||
|
||||
Interleavers and De-interleavers
|
||||
================================
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
RandInterlv -- Random Interleaver.
|
||||
|
||||
"""
|
||||
|
||||
from commpy.channelcoding.convcode import Trellis, conv_encode, viterbi_decode
|
||||
from commpy.channelcoding.interleavers import *
|
||||
from commpy.channelcoding.turbo import turbo_encode, map_decode, turbo_decode
|
||||
from commpy.channelcoding.ldpc import get_ldpc_code_params, ldpc_bp_decode
|
||||
from commpy.channelcoding.gfields import *
|
||||
from commpy.channelcoding.algcode import *
|
||||
|
||||
try:
|
||||
from numpy.testing import Tester
|
||||
test = Tester().test
|
||||
except:
|
||||
pass
|
73
scripts/commpy/channelcoding/algcode.py
Normal file
73
scripts/commpy/channelcoding/algcode.py
Normal file
@ -0,0 +1,73 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
from fractions import gcd
|
||||
from numpy import array, arange, concatenate, convolve
|
||||
|
||||
from commpy.channelcoding.gfields import GF, polymultiply, poly_to_string
|
||||
from commpy.utilities import dec2bitarray, bitarray2dec
|
||||
|
||||
__all__ = ['cyclic_code_genpoly']
|
||||
|
||||
def cyclic_code_genpoly(n, k):
|
||||
"""
|
||||
Generate all possible generator polynomials for a (n, k)-cyclic code.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Code blocklength of the cyclic code.
|
||||
|
||||
k : int
|
||||
Information blocklength of the cyclic code.
|
||||
|
||||
Returns
|
||||
-------
|
||||
poly_list : 1D ndarray of ints
|
||||
A list of generator polynomials (represented as integers) for the (n, k)-cyclic code.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
if n%2 == 0:
|
||||
raise ValueError("n cannot be an even number")
|
||||
|
||||
for m in arange(1, 18):
|
||||
if (2**m-1)%n == 0:
|
||||
break
|
||||
|
||||
x_gf = GF(arange(1, 2**m), m)
|
||||
coset_fields = x_gf.cosets()
|
||||
|
||||
coset_leaders = array([])
|
||||
minpol_degrees = array([])
|
||||
for field in coset_fields:
|
||||
coset_leaders = concatenate((coset_leaders, array([field.elements[0]])))
|
||||
minpol_degrees = concatenate((minpol_degrees, array([len(field.elements)])))
|
||||
|
||||
y_gf = GF(coset_leaders, m)
|
||||
minpol_list = y_gf.minpolys()
|
||||
idx_list = arange(1, len(minpol_list))
|
||||
poly_list = array([])
|
||||
|
||||
for i in range(1, 2**len(minpol_list)):
|
||||
i_array = dec2bitarray(i, len(minpol_list))
|
||||
subset_array = minpol_degrees[i_array == 1]
|
||||
if int(subset_array.sum()) == (n-k):
|
||||
poly_set = minpol_list[i_array == 1]
|
||||
gpoly = 1
|
||||
for poly in poly_set:
|
||||
gpoly_array = dec2bitarray(gpoly, 2**m)
|
||||
poly_array = dec2bitarray(poly, 2**m)
|
||||
gpoly = bitarray2dec(convolve(gpoly_array, poly_array) % 2)
|
||||
poly_list = concatenate((poly_list, array([gpoly])))
|
||||
|
||||
return poly_list.astype(int)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
genpolys = cyclic_code_genpoly(31, 21)
|
||||
for poly in genpolys:
|
||||
print(poly_to_string(poly))
|
573
scripts/commpy/channelcoding/convcode.py
Normal file
573
scripts/commpy/channelcoding/convcode.py
Normal file
@ -0,0 +1,573 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
""" Algorithms for Convolutional Codes """
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.collections import PatchCollection
|
||||
import matplotlib.patches as mpatches
|
||||
|
||||
from commpy.utilities import dec2bitarray, bitarray2dec, hamming_dist, euclid_dist
|
||||
#from commpy.channelcoding.acstb import acs_traceback
|
||||
|
||||
__all__ = ['Trellis', 'conv_encode', 'viterbi_decode']
|
||||
|
||||
class Trellis:
|
||||
"""
|
||||
Class defining a Trellis corresponding to a k/n - rate convolutional code.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
memory : 1D ndarray of ints
|
||||
Number of memory elements per input of the convolutional encoder.
|
||||
|
||||
g_matrix : 2D ndarray of ints (octal representation)
|
||||
Generator matrix G(D) of the convolutional encoder. Each element of
|
||||
G(D) represents a polynomial.
|
||||
|
||||
feedback : int, optional
|
||||
Feedback polynomial of the convolutional encoder. Default value is 00.
|
||||
|
||||
code_type : {'default', 'rsc'}, optional
|
||||
Use 'rsc' to generate a recursive systematic convolutional code.
|
||||
|
||||
If 'rsc' is specified, then the first 'k x k' sub-matrix of
|
||||
|
||||
G(D) must represent a identity matrix along with a non-zero
|
||||
feedback polynomial.
|
||||
|
||||
|
||||
Attributes
|
||||
----------
|
||||
k : int
|
||||
Size of the smallest block of input bits that can be encoded using
|
||||
the convolutional code.
|
||||
|
||||
n : int
|
||||
Size of the smallest block of output bits generated using
|
||||
the convolutional code.
|
||||
|
||||
total_memory : int
|
||||
Total number of delay elements needed to implement the convolutional
|
||||
encoder.
|
||||
|
||||
number_states : int
|
||||
Number of states in the convolutional code trellis.
|
||||
|
||||
number_inputs : int
|
||||
Number of branches from each state in the convolutional code trellis.
|
||||
|
||||
next_state_table : 2D ndarray of ints
|
||||
Table representing the state transition matrix of the
|
||||
convolutional code trellis. Rows represent current states and
|
||||
columns represent current inputs in decimal. Elements represent the
|
||||
corresponding next states in decimal.
|
||||
|
||||
output_table : 2D ndarray of ints
|
||||
Table representing the output matrix of the convolutional code trellis.
|
||||
Rows represent current states and columns represent current inputs in
|
||||
decimal. Elements represent corresponding outputs in decimal.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy import array
|
||||
>>> import commpy.channelcoding.convcode as cc
|
||||
>>> memory = array([2])
|
||||
>>> g_matrix = array([[05, 07]]) # G(D) = [1+D^2, 1+D+D^2]
|
||||
>>> trellis = cc.Trellis(memory, g_matrix)
|
||||
>>> print trellis.k
|
||||
1
|
||||
>>> print trellis.n
|
||||
2
|
||||
>>> print trellis.total_memory
|
||||
2
|
||||
>>> print trellis.number_states
|
||||
4
|
||||
>>> print trellis.number_inputs
|
||||
2
|
||||
>>> print trellis.next_state_table
|
||||
[[0 2]
|
||||
[0 2]
|
||||
[1 3]
|
||||
[1 3]]
|
||||
>>>print trellis.output_table
|
||||
[[0 3]
|
||||
[3 0]
|
||||
[1 2]
|
||||
[2 1]]
|
||||
|
||||
"""
|
||||
def __init__(self, memory, g_matrix, feedback = 0, code_type = 'default'):
|
||||
|
||||
[self.k, self.n] = g_matrix.shape
|
||||
|
||||
if code_type == 'rsc':
|
||||
for i in range(self.k):
|
||||
g_matrix[i][i] = feedback
|
||||
|
||||
self.total_memory = memory.sum()
|
||||
self.number_states = pow(2, self.total_memory)
|
||||
self.number_inputs = pow(2, self.k)
|
||||
self.next_state_table = np.zeros([self.number_states,
|
||||
self.number_inputs], 'int')
|
||||
self.output_table = np.zeros([self.number_states,
|
||||
self.number_inputs], 'int')
|
||||
|
||||
# Compute the entries in the next state table and the output table
|
||||
for current_state in range(self.number_states):
|
||||
|
||||
for current_input in range(self.number_inputs):
|
||||
outbits = np.zeros(self.n, 'int')
|
||||
|
||||
# Compute the values in the output_table
|
||||
for r in range(self.n):
|
||||
|
||||
output_generator_array = np.zeros(self.k, 'int')
|
||||
shift_register = dec2bitarray(current_state,
|
||||
self.total_memory)
|
||||
|
||||
for l in range(self.k):
|
||||
|
||||
# Convert the number representing a polynomial into a
|
||||
# bit array
|
||||
generator_array = dec2bitarray(g_matrix[l][r],
|
||||
memory[l]+1)
|
||||
|
||||
# Loop over M delay elements of the shift register
|
||||
# to compute their contribution to the r-th output
|
||||
for i in range(memory[l]):
|
||||
outbits[r] = (outbits[r] + \
|
||||
(shift_register[i+l]*generator_array[i+1])) % 2
|
||||
|
||||
output_generator_array[l] = generator_array[0]
|
||||
if l == 0:
|
||||
feedback_array = (dec2bitarray(feedback, memory[l]) * shift_register[0:memory[l]]).sum()
|
||||
shift_register[1:memory[l]] = \
|
||||
shift_register[0:memory[l]-1]
|
||||
shift_register[0] = (dec2bitarray(current_input,
|
||||
self.k)[0] + feedback_array) % 2
|
||||
else:
|
||||
feedback_array = (dec2bitarray(feedback, memory[l]) *
|
||||
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-1]).sum()
|
||||
shift_register[l+memory[l-1]:l+memory[l-1]+memory[l]-1] = \
|
||||
shift_register[l+memory[l-1]-1:l+memory[l-1]+memory[l]-2]
|
||||
shift_register[l+memory[l-1]-1] = \
|
||||
(dec2bitarray(current_input, self.k)[l] + feedback_array) % 2
|
||||
|
||||
# Compute the contribution of the current_input to output
|
||||
outbits[r] = (outbits[r] + \
|
||||
(np.sum(dec2bitarray(current_input, self.k) * \
|
||||
output_generator_array + feedback_array) % 2)) % 2
|
||||
|
||||
# Update the ouput_table using the computed output value
|
||||
self.output_table[current_state][current_input] = \
|
||||
bitarray2dec(outbits)
|
||||
|
||||
# Update the next_state_table using the new state of
|
||||
# the shift register
|
||||
self.next_state_table[current_state][current_input] = \
|
||||
bitarray2dec(shift_register)
|
||||
|
||||
|
||||
def _generate_grid(self, trellis_length):
|
||||
""" Private method """
|
||||
|
||||
grid = np.mgrid[0.12:0.22*trellis_length:(trellis_length+1)*(0+1j),
|
||||
0.1:0.1+self.number_states*0.1:self.number_states*(0+1j)].reshape(2, -1)
|
||||
|
||||
return grid
|
||||
|
||||
def _generate_states(self, trellis_length, grid, state_order, state_radius, font):
|
||||
""" Private method """
|
||||
state_patches = []
|
||||
|
||||
for state_count in range(self.number_states * trellis_length):
|
||||
state_patch = mpatches.Circle(grid[:,state_count], state_radius,
|
||||
color="#003399", ec="#cccccc")
|
||||
state_patches.append(state_patch)
|
||||
plt.text(grid[0, state_count], grid[1, state_count]-0.02,
|
||||
str(state_order[state_count % self.number_states]),
|
||||
ha="center", family=font, size=20, color="#ffffff")
|
||||
|
||||
return state_patches
|
||||
|
||||
def _generate_edges(self, trellis_length, grid, state_order, state_radius, edge_colors):
|
||||
""" Private method """
|
||||
edge_patches = []
|
||||
|
||||
for current_time_index in range(trellis_length-1):
|
||||
grid_subset = grid[:,self.number_states * current_time_index:]
|
||||
for state_count_1 in range(self.number_states):
|
||||
input_count = 0
|
||||
for state_count_2 in range(self.number_states):
|
||||
dx = grid_subset[0, state_count_2+self.number_states] - grid_subset[0,state_count_1] - 2*state_radius
|
||||
dy = grid_subset[1, state_count_2+self.number_states] - grid_subset[1,state_count_1]
|
||||
if np.count_nonzero(self.next_state_table[state_order[state_count_1],:] == state_order[state_count_2]):
|
||||
found_index = np.where(self.next_state_table[state_order[state_count_1],:] ==
|
||||
state_order[state_count_2])
|
||||
edge_patch = mpatches.FancyArrow(grid_subset[0,state_count_1]+state_radius,
|
||||
grid_subset[1,state_count_1], dx, dy, width=0.005,
|
||||
length_includes_head = True, color = edge_colors[found_index[0][0]])
|
||||
edge_patches.append(edge_patch)
|
||||
input_count = input_count + 1
|
||||
|
||||
return edge_patches
|
||||
|
||||
def _generate_labels(self, grid, state_order, state_radius, font):
|
||||
""" Private method """
|
||||
|
||||
for state_count in range(self.number_states):
|
||||
for input_count in range(self.number_inputs):
|
||||
edge_label = str(input_count) + "/" + str(
|
||||
self.output_table[state_order[state_count], input_count])
|
||||
plt.text(grid[0, state_count]-1.5*state_radius,
|
||||
grid[1, state_count]+state_radius*(1-input_count-0.7),
|
||||
edge_label, ha="center", family=font, size=14)
|
||||
|
||||
|
||||
def visualize(self, trellis_length = 2, state_order = None,
|
||||
state_radius = 0.04, edge_colors = None):
|
||||
""" Plot the trellis diagram.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
trellis_length : int, optional
|
||||
Specifies the number of time steps in the trellis diagram.
|
||||
Default value is 2.
|
||||
|
||||
state_order : list of ints, optional
|
||||
Specifies the order in the which the states of the trellis
|
||||
are to be displayed starting from the top in the plot.
|
||||
Default order is [0,...,number_states-1]
|
||||
|
||||
state_radius : float, optional
|
||||
Radius of each state (circle) in the plot.
|
||||
Default value is 0.04
|
||||
|
||||
edge_colors = list of hex color codes, optional
|
||||
A list of length equal to the number_inputs,
|
||||
containing color codes that represent the edge corresponding
|
||||
to the input.
|
||||
|
||||
"""
|
||||
if edge_colors is None:
|
||||
edge_colors = ["#9E1BE0", "#06D65D"]
|
||||
|
||||
if state_order is None:
|
||||
state_order = range(self.number_states)
|
||||
|
||||
font = "sans-serif"
|
||||
fig = plt.figure()
|
||||
ax = plt.axes([0,0,1,1])
|
||||
trellis_patches = []
|
||||
|
||||
state_order.reverse()
|
||||
|
||||
trellis_grid = self._generate_grid(trellis_length)
|
||||
state_patches = self._generate_states(trellis_length, trellis_grid,
|
||||
state_order, state_radius, font)
|
||||
edge_patches = self._generate_edges(trellis_length, trellis_grid,
|
||||
state_order, state_radius,
|
||||
edge_colors)
|
||||
self._generate_labels(trellis_grid, state_order, state_radius, font)
|
||||
|
||||
trellis_patches.extend(state_patches)
|
||||
trellis_patches.extend(edge_patches)
|
||||
|
||||
collection = PatchCollection(trellis_patches, match_original=True)
|
||||
ax.add_collection(collection)
|
||||
ax.set_xticks([])
|
||||
ax.set_yticks([])
|
||||
#plt.legend([edge_patches[0], edge_patches[1]], ["1-input", "0-input"])
|
||||
plt.show()
|
||||
|
||||
|
||||
def conv_encode(message_bits, trellis, code_type = 'default', puncture_matrix=None):
|
||||
"""
|
||||
Encode bits using a convolutional code.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
message_bits : 1D ndarray containing {0, 1}
|
||||
Stream of bits to be convolutionally encoded.
|
||||
|
||||
generator_matrix : 2-D ndarray of ints
|
||||
Generator matrix G(D) of the convolutional code using which the input
|
||||
bits are to be encoded.
|
||||
|
||||
M : 1D ndarray of ints
|
||||
Number of memory elements per input of the convolutional encoder.
|
||||
|
||||
Returns
|
||||
-------
|
||||
coded_bits : 1D ndarray containing {0, 1}
|
||||
Encoded bit stream.
|
||||
"""
|
||||
|
||||
k = trellis.k
|
||||
n = trellis.n
|
||||
total_memory = trellis.total_memory
|
||||
rate = float(k)/n
|
||||
|
||||
if puncture_matrix is None:
|
||||
puncture_matrix = np.ones((trellis.k, trellis.n))
|
||||
|
||||
number_message_bits = np.size(message_bits)
|
||||
|
||||
# Initialize an array to contain the message bits plus the truncation zeros
|
||||
if code_type == 'default':
|
||||
inbits = np.zeros(number_message_bits + total_memory + total_memory % k,
|
||||
'int')
|
||||
number_inbits = number_message_bits + total_memory + total_memory % k
|
||||
|
||||
# Pad the input bits with M zeros (L-th terminated truncation)
|
||||
inbits[0:number_message_bits] = message_bits
|
||||
number_outbits = int(number_inbits/rate)
|
||||
|
||||
else:
|
||||
inbits = message_bits
|
||||
number_inbits = number_message_bits
|
||||
number_outbits = int((number_inbits + total_memory)/rate)
|
||||
|
||||
outbits = np.zeros(number_outbits, 'int')
|
||||
p_outbits = np.zeros(int(number_outbits*
|
||||
puncture_matrix[0:].sum()/np.size(puncture_matrix, 1)), 'int')
|
||||
next_state_table = trellis.next_state_table
|
||||
output_table = trellis.output_table
|
||||
|
||||
# Encoding process - Each iteration of the loop represents one clock cycle
|
||||
current_state = 0
|
||||
j = 0
|
||||
|
||||
for i in range(int(number_inbits/k)): # Loop through all input bits
|
||||
current_input = bitarray2dec(inbits[i*k:(i+1)*k])
|
||||
current_output = output_table[current_state][current_input]
|
||||
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
|
||||
current_state = next_state_table[current_state][current_input]
|
||||
j += 1
|
||||
|
||||
if code_type == 'rsc':
|
||||
|
||||
term_bits = dec2bitarray(current_state, trellis.total_memory)
|
||||
term_bits = term_bits[::-1]
|
||||
for i in range(trellis.total_memory):
|
||||
current_input = bitarray2dec(term_bits[i*k:(i+1)*k])
|
||||
current_output = output_table[current_state][current_input]
|
||||
outbits[j*n:(j+1)*n] = dec2bitarray(current_output, n)
|
||||
current_state = next_state_table[current_state][current_input]
|
||||
j += 1
|
||||
|
||||
j = 0
|
||||
for i in range(number_outbits):
|
||||
if puncture_matrix[0][i % np.size(puncture_matrix, 1)] == 1:
|
||||
p_outbits[j] = outbits[i]
|
||||
j = j + 1
|
||||
|
||||
return p_outbits
|
||||
|
||||
|
||||
def _where_c(inarray, rows, cols, search_value, index_array):
|
||||
|
||||
#cdef int i, j,
|
||||
number_found = 0
|
||||
for i in range(rows):
|
||||
for j in range(cols):
|
||||
if inarray[i, j] == search_value:
|
||||
index_array[number_found, 0] = i
|
||||
index_array[number_found, 1] = j
|
||||
number_found += 1
|
||||
|
||||
return number_found
|
||||
|
||||
|
||||
def _acs_traceback(r_codeword, trellis, decoding_type,
|
||||
path_metrics, paths, decoded_symbols,
|
||||
decoded_bits, tb_count, t, count,
|
||||
tb_depth, current_number_states):
|
||||
|
||||
#cdef int state_num, i, j, number_previous_states, previous_state, \
|
||||
# previous_input, i_codeword, number_found, min_idx, \
|
||||
# current_state, dec_symbol
|
||||
|
||||
k = trellis.k
|
||||
n = trellis.n
|
||||
number_states = trellis.number_states
|
||||
number_inputs = trellis.number_inputs
|
||||
|
||||
branch_metric = 0.0
|
||||
|
||||
next_state_table = trellis.next_state_table
|
||||
output_table = trellis.output_table
|
||||
pmetrics = np.empty(number_inputs)
|
||||
i_codeword_array = np.empty(n, 'int')
|
||||
index_array = np.empty([number_states, 2], 'int')
|
||||
decoded_bitarray = np.empty(k, 'int')
|
||||
|
||||
# Loop over all the current states (Time instant: t)
|
||||
for state_num in range(current_number_states):
|
||||
|
||||
# Using the next state table find the previous states and inputs
|
||||
# leading into the current state (Trellis)
|
||||
number_found = _where_c(next_state_table, number_states, number_inputs, state_num, index_array)
|
||||
|
||||
# Loop over all the previous states (Time instant: t-1)
|
||||
for i in range(number_found):
|
||||
|
||||
previous_state = index_array[i, 0]
|
||||
previous_input = index_array[i, 1]
|
||||
|
||||
# Using the output table, find the ideal codeword
|
||||
i_codeword = output_table[previous_state, previous_input]
|
||||
#dec2bitarray_c(i_codeword, n, i_codeword_array)
|
||||
i_codeword_array = dec2bitarray(i_codeword, n)
|
||||
|
||||
# Compute Branch Metrics
|
||||
if decoding_type == 'hard':
|
||||
#branch_metric = hamming_dist_c(r_codeword.astype(int), i_codeword_array.astype(int), n)
|
||||
branch_metric = hamming_dist(r_codeword.astype(int), i_codeword_array.astype(int))
|
||||
elif decoding_type == 'soft':
|
||||
pass
|
||||
elif decoding_type == 'unquantized':
|
||||
i_codeword_array = 2*i_codeword_array - 1
|
||||
branch_metric = euclid_dist(r_codeword, i_codeword_array)
|
||||
else:
|
||||
pass
|
||||
|
||||
# ADD operation: Add the branch metric to the
|
||||
# accumulated path metric and store it in the temporary array
|
||||
pmetrics[i] = path_metrics[previous_state, 0] + branch_metric
|
||||
|
||||
# COMPARE and SELECT operations
|
||||
# Compare and Select the minimum accumulated path metric
|
||||
path_metrics[state_num, 1] = pmetrics.min()
|
||||
|
||||
# Store the previous state corresponding to the minimum
|
||||
# accumulated path metric
|
||||
min_idx = pmetrics.argmin()
|
||||
paths[state_num, tb_count] = index_array[min_idx, 0]
|
||||
|
||||
# Store the previous input corresponding to the minimum
|
||||
# accumulated path metric
|
||||
decoded_symbols[state_num, tb_count] = index_array[min_idx, 1]
|
||||
|
||||
if t >= tb_depth - 1:
|
||||
current_state = path_metrics[:,1].argmin()
|
||||
|
||||
# Traceback Loop
|
||||
for j in reversed(range(1, tb_depth)):
|
||||
|
||||
dec_symbol = decoded_symbols[current_state, j]
|
||||
previous_state = paths[current_state, j]
|
||||
decoded_bitarray = dec2bitarray(dec_symbol, k)
|
||||
decoded_bits[(t-tb_depth-1)+(j+1)*k+count:(t-tb_depth-1)+(j+2)*k+count] = \
|
||||
decoded_bitarray
|
||||
current_state = previous_state
|
||||
|
||||
paths[:,0:tb_depth-1] = paths[:,1:]
|
||||
decoded_symbols[:,0:tb_depth-1] = decoded_symbols[:,1:]
|
||||
|
||||
|
||||
|
||||
def viterbi_decode(coded_bits, trellis, tb_depth=None, decoding_type='hard'):
|
||||
"""
|
||||
Decodes a stream of convolutionally encoded bits using the Viterbi Algorithm
|
||||
|
||||
Parameters
|
||||
----------
|
||||
coded_bits : 1D ndarray
|
||||
Stream of convolutionally encoded bits which are to be decoded.
|
||||
|
||||
generator_matrix : 2D ndarray of ints
|
||||
Generator matrix G(D) of the convolutional code using which the
|
||||
input bits are to be decoded.
|
||||
|
||||
M : 1D ndarray of ints
|
||||
Number of memory elements per input of the convolutional encoder.
|
||||
|
||||
tb_length : int
|
||||
Traceback depth (Typically set to 5*(M+1)).
|
||||
|
||||
decoding_type : str {'hard', 'unquantized'}
|
||||
The type of decoding to be used.
|
||||
'hard' option is used for hard inputs (bits) to the decoder, e.g., BSC channel.
|
||||
'unquantized' option is used for soft inputs (real numbers) to the decoder, e.g., BAWGN channel.
|
||||
|
||||
Returns
|
||||
-------
|
||||
decoded_bits : 1D ndarray
|
||||
Decoded bit stream.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] Todd K. Moon. Error Correction Coding: Mathematical Methods and
|
||||
Algorithms. John Wiley and Sons, 2005.
|
||||
"""
|
||||
|
||||
# k = Rows in G(D), n = columns in G(D)
|
||||
k = trellis.k
|
||||
n = trellis.n
|
||||
rate = float(k)/n
|
||||
total_memory = trellis.total_memory
|
||||
number_states = trellis.number_states
|
||||
number_inputs = trellis.number_inputs
|
||||
|
||||
if tb_depth is None:
|
||||
tb_depth = 5*total_memory
|
||||
|
||||
next_state_table = trellis.next_state_table
|
||||
output_table = trellis.output_table
|
||||
|
||||
# Number of message bits after decoding
|
||||
L = int(len(coded_bits)*rate)
|
||||
|
||||
path_metrics = np.empty([number_states, 2])
|
||||
path_metrics[:, :] = 1000000
|
||||
path_metrics[0][0] = 0
|
||||
paths = np.empty([number_states, tb_depth], 'int')
|
||||
paths[:, :] = 1000000
|
||||
paths[0][0] = 0
|
||||
|
||||
decoded_symbols = np.zeros([number_states, tb_depth], 'int')
|
||||
decoded_bits = np.zeros(L+tb_depth+k, 'int')
|
||||
r_codeword = np.zeros(n, 'int')
|
||||
|
||||
tb_count = 1
|
||||
count = 0
|
||||
current_number_states = number_states
|
||||
|
||||
for t in range(1, int((L+total_memory+total_memory%k)/k) + 1):
|
||||
# Get the received codeword corresponding to t
|
||||
if t <= L:
|
||||
r_codeword = coded_bits[(t-1)*n:t*n]
|
||||
else:
|
||||
if decoding_type == 'hard':
|
||||
r_codeword[:] = 0
|
||||
elif decoding_type == 'soft':
|
||||
pass
|
||||
elif decoding_type == 'unquantized':
|
||||
r_codeword[:] = 0
|
||||
r_codeword = 2*r_codeword - 1
|
||||
else:
|
||||
pass
|
||||
|
||||
_acs_traceback(r_codeword, trellis, decoding_type, path_metrics, paths,
|
||||
decoded_symbols, decoded_bits, tb_count, t, count, tb_depth,
|
||||
current_number_states)
|
||||
|
||||
if t >= tb_depth - 1:
|
||||
tb_count = tb_depth - 1
|
||||
count = count + k - 1
|
||||
else:
|
||||
tb_count = tb_count + 1
|
||||
|
||||
# Path metrics (at t-1) = Path metrics (at t)
|
||||
path_metrics[:, 0] = path_metrics[:, 1]
|
||||
|
||||
# Force all the paths back to '0' state at the end of decoding
|
||||
if t == (L+total_memory+total_memory%k)/k:
|
||||
current_number_states = 1
|
||||
|
||||
return decoded_bits[0:len(decoded_bits)-tb_depth-1]
|
148
scripts/commpy/channelcoding/designs/ldpc/gallager/96.3.963.txt
Normal file
148
scripts/commpy/channelcoding/designs/ldpc/gallager/96.3.963.txt
Normal file
@ -0,0 +1,148 @@
|
||||
96 48
|
||||
3 6
|
||||
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
|
||||
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
|
||||
10 30 40
|
||||
5 32 45
|
||||
16 18 39
|
||||
12 22 38
|
||||
15 19 47
|
||||
2 17 34
|
||||
9 24 42
|
||||
1 29 33
|
||||
4 27 36
|
||||
3 26 35
|
||||
11 31 43
|
||||
7 21 44
|
||||
8 20 48
|
||||
14 23 46
|
||||
6 28 37
|
||||
13 25 41
|
||||
14 32 43
|
||||
5 23 37
|
||||
2 31 36
|
||||
1 28 34
|
||||
7 25 47
|
||||
10 21 33
|
||||
15 30 35
|
||||
16 26 48
|
||||
3 22 46
|
||||
12 20 41
|
||||
8 18 38
|
||||
4 19 45
|
||||
6 24 40
|
||||
9 27 39
|
||||
13 17 42
|
||||
11 29 44
|
||||
8 24 34
|
||||
6 25 36
|
||||
9 19 43
|
||||
1 20 46
|
||||
14 27 42
|
||||
7 22 39
|
||||
13 18 35
|
||||
4 26 40
|
||||
16 29 38
|
||||
15 21 48
|
||||
11 23 45
|
||||
3 17 47
|
||||
5 28 44
|
||||
12 32 33
|
||||
2 30 41
|
||||
10 31 37
|
||||
10 18 36
|
||||
4 23 44
|
||||
9 29 40
|
||||
2 27 38
|
||||
8 30 42
|
||||
12 28 43
|
||||
11 20 37
|
||||
1 19 35
|
||||
15 31 39
|
||||
16 32 41
|
||||
5 26 33
|
||||
3 25 45
|
||||
13 21 34
|
||||
14 24 48
|
||||
7 17 46
|
||||
6 22 47
|
||||
7 27 40
|
||||
11 18 33
|
||||
2 32 35
|
||||
10 28 47
|
||||
5 24 41
|
||||
12 25 37
|
||||
3 19 39
|
||||
14 31 44
|
||||
16 30 34
|
||||
13 20 38
|
||||
9 22 36
|
||||
6 17 45
|
||||
4 21 42
|
||||
15 29 46
|
||||
8 26 43
|
||||
1 23 48
|
||||
1 25 42
|
||||
15 22 40
|
||||
8 21 41
|
||||
9 18 47
|
||||
6 27 43
|
||||
11 30 46
|
||||
7 31 35
|
||||
5 20 36
|
||||
14 17 38
|
||||
16 28 45
|
||||
4 32 37
|
||||
13 23 33
|
||||
12 26 44
|
||||
3 29 48
|
||||
2 24 39
|
||||
10 19 34
|
||||
8 20 36 56 80 81
|
||||
6 19 47 52 67 95
|
||||
10 25 44 60 71 94
|
||||
9 28 40 50 77 91
|
||||
2 18 45 59 69 88
|
||||
15 29 34 64 76 85
|
||||
12 21 38 63 65 87
|
||||
13 27 33 53 79 83
|
||||
7 30 35 51 75 84
|
||||
1 22 48 49 68 96
|
||||
11 32 43 55 66 86
|
||||
4 26 46 54 70 93
|
||||
16 31 39 61 74 92
|
||||
14 17 37 62 72 89
|
||||
5 23 42 57 78 82
|
||||
3 24 41 58 73 90
|
||||
6 31 44 63 76 89
|
||||
3 27 39 49 66 84
|
||||
5 28 35 56 71 96
|
||||
13 26 36 55 74 88
|
||||
12 22 42 61 77 83
|
||||
4 25 38 64 75 82
|
||||
14 18 43 50 80 92
|
||||
7 29 33 62 69 95
|
||||
16 21 34 60 70 81
|
||||
10 24 40 59 79 93
|
||||
9 30 37 52 65 85
|
||||
15 20 45 54 68 90
|
||||
8 32 41 51 78 94
|
||||
1 23 47 53 73 86
|
||||
11 19 48 57 72 87
|
||||
2 17 46 58 67 91
|
||||
8 22 46 59 66 92
|
||||
6 20 33 61 73 96
|
||||
10 23 39 56 67 87
|
||||
9 19 34 49 75 88
|
||||
15 18 48 55 70 91
|
||||
4 27 41 52 74 89
|
||||
3 30 38 57 71 95
|
||||
1 29 40 51 65 82
|
||||
16 26 47 58 69 83
|
||||
7 31 37 53 77 81
|
||||
11 17 35 54 79 85
|
||||
12 32 45 50 72 93
|
||||
2 28 43 60 76 90
|
||||
14 25 36 63 78 86
|
||||
5 21 44 64 68 84
|
||||
13 24 42 62 80 94
|
148
scripts/commpy/channelcoding/designs/ldpc/gallager/96.33.964.txt
Normal file
148
scripts/commpy/channelcoding/designs/ldpc/gallager/96.33.964.txt
Normal file
@ -0,0 +1,148 @@
|
||||
96 48
|
||||
3 6
|
||||
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
|
||||
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
|
||||
47 4 21
|
||||
33 38 31
|
||||
11 1 33
|
||||
3 48 37
|
||||
42 9 36
|
||||
17 22 7
|
||||
48 15 13
|
||||
40 28 47
|
||||
22 42 5
|
||||
28 33 30
|
||||
27 18 19
|
||||
2 34 10
|
||||
38 41 27
|
||||
18 7 32
|
||||
16 32 45
|
||||
26 24 1
|
||||
25 16 22
|
||||
35 25 34
|
||||
37 2 11
|
||||
21 3 39
|
||||
34 21 28
|
||||
12 13 6
|
||||
1 39 38
|
||||
9 8 12
|
||||
44 12 48
|
||||
29 14 9
|
||||
31 29 26
|
||||
5 46 14
|
||||
36 6 24
|
||||
46 23 3
|
||||
45 30 4
|
||||
24 11 8
|
||||
23 10 42
|
||||
7 35 43
|
||||
32 19 41
|
||||
19 20 25
|
||||
15 47 46
|
||||
39 31 2
|
||||
13 43 20
|
||||
43 40 15
|
||||
8 5 35
|
||||
4 26 44
|
||||
6 37 17
|
||||
10 45 18
|
||||
20 27 29
|
||||
30 17 16
|
||||
41 36 23
|
||||
14 44 40
|
||||
7 31 42
|
||||
25 23 21
|
||||
22 34 41
|
||||
42 3 19
|
||||
40 35 27
|
||||
21 19 17
|
||||
4 8 28
|
||||
35 45 31
|
||||
2 28 32
|
||||
37 30 9
|
||||
38 40 30
|
||||
34 36 13
|
||||
33 46 10
|
||||
32 12 40
|
||||
18 41 11
|
||||
17 1 2
|
||||
45 39 29
|
||||
9 48 4
|
||||
47 11 34
|
||||
19 29 24
|
||||
44 17 5
|
||||
15 2 3
|
||||
16 21 33
|
||||
11 20 44
|
||||
20 9 47
|
||||
23 47 38
|
||||
24 16 12
|
||||
41 24 37
|
||||
39 5 43
|
||||
6 43 23
|
||||
31 10 16
|
||||
48 33 35
|
||||
28 18 48
|
||||
8 42 18
|
||||
36 32 8
|
||||
14 6 25
|
||||
29 15 36
|
||||
46 38 26
|
||||
5 4 6
|
||||
27 44 22
|
||||
26 22 45
|
||||
43 27 1
|
||||
10 25 39
|
||||
12 14 7
|
||||
13 7 46
|
||||
30 13 14
|
||||
3 26 20
|
||||
1 37 15
|
||||
23 96 3 64 16 90
|
||||
12 57 19 70 38 64
|
||||
4 95 20 52 30 70
|
||||
42 55 1 87 31 66
|
||||
28 87 41 77 9 69
|
||||
43 78 29 84 22 87
|
||||
34 49 14 93 6 92
|
||||
41 82 24 55 32 83
|
||||
24 66 5 73 26 58
|
||||
44 91 33 79 12 61
|
||||
3 72 32 67 19 63
|
||||
22 92 25 62 24 75
|
||||
39 93 22 94 7 60
|
||||
48 84 26 92 28 94
|
||||
37 70 7 85 40 96
|
||||
15 71 17 75 46 79
|
||||
6 64 46 69 43 54
|
||||
14 63 11 81 44 82
|
||||
36 68 35 54 11 52
|
||||
45 73 36 72 39 95
|
||||
20 54 21 71 1 50
|
||||
9 51 6 89 17 88
|
||||
33 74 30 50 47 78
|
||||
32 75 16 76 29 68
|
||||
17 50 18 91 36 84
|
||||
16 89 42 95 27 86
|
||||
11 88 45 90 13 53
|
||||
10 81 8 57 21 55
|
||||
26 85 27 68 45 65
|
||||
46 94 31 58 10 59
|
||||
27 79 38 49 2 56
|
||||
35 62 15 83 14 57
|
||||
2 61 10 80 3 71
|
||||
21 60 12 51 18 67
|
||||
18 56 34 53 41 80
|
||||
29 83 47 60 5 85
|
||||
19 58 43 96 4 76
|
||||
13 59 2 86 23 74
|
||||
38 77 23 65 20 91
|
||||
8 53 40 59 48 62
|
||||
47 76 13 63 35 51
|
||||
5 52 9 82 33 49
|
||||
40 90 39 78 34 77
|
||||
25 69 48 88 42 72
|
||||
31 65 44 56 15 89
|
||||
30 86 28 61 37 93
|
||||
1 67 37 74 8 73
|
||||
7 80 4 66 25 81
|
196
scripts/commpy/channelcoding/gfields.py
Normal file
196
scripts/commpy/channelcoding/gfields.py
Normal file
@ -0,0 +1,196 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
""" Galois Fields """
|
||||
|
||||
from fractions import gcd
|
||||
from numpy import array, zeros, arange, convolve, ndarray, concatenate
|
||||
from itertools import *
|
||||
from commpy.utilities import dec2bitarray, bitarray2dec
|
||||
|
||||
__all__ = ['GF', 'polydivide', 'polymultiply', 'poly_to_string']
|
||||
|
||||
class GF:
|
||||
"""
|
||||
Defines a Binary Galois Field of order m, containing n,
|
||||
where n can be a single element or a list of elements within the field.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Represents the Galois field element(s).
|
||||
|
||||
m : int
|
||||
Specifies the order of the Galois Field.
|
||||
|
||||
Returns
|
||||
-------
|
||||
x : int
|
||||
A Galois Field GF(2\ :sup:`m`) object.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> from numpy import arange
|
||||
>>> from gfields import GF
|
||||
>>> x = arange(16)
|
||||
>>> m = 4
|
||||
>>> x = GF(x, m)
|
||||
>>> print x.elements
|
||||
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]
|
||||
>>> print x.prim_poly
|
||||
19
|
||||
|
||||
"""
|
||||
|
||||
# Initialization
|
||||
def __init__(self, x, m):
|
||||
self.m = m
|
||||
primpoly_array = array([0, 3, 7, 11, 19, 37, 67, 137, 285, 529, 1033,
|
||||
2053, 4179, 8219, 17475, 32771, 69643])
|
||||
self.prim_poly = primpoly_array[self.m]
|
||||
if type(x) is int and x >= 0 and x < pow(2, m):
|
||||
self.elements = array([x])
|
||||
elif type(x) is ndarray and len(x) >= 1:
|
||||
self.elements = x
|
||||
|
||||
# Overloading addition operator for Galois Field
|
||||
def __add__(self, x):
|
||||
if len(self.elements) == len(x.elements):
|
||||
return GF(self.elements ^ x.elements, self.m)
|
||||
else:
|
||||
raise ValueError("The arguments should have the same number of elements")
|
||||
|
||||
# Overloading multiplication operator for Galois Field
|
||||
def __mul__(self, x):
|
||||
if len(x.elements) == len(self.elements):
|
||||
prod_elements = arange(len(self.elements))
|
||||
for i in range(len(self.elements)):
|
||||
prod_elements[i] = polymultiply(self.elements[i], x.elements[i], self.m, self.prim_poly)
|
||||
return GF(prod_elements, self.m)
|
||||
else:
|
||||
raise ValueError("Two sets of elements cannot be multiplied")
|
||||
|
||||
def power_to_tuple(self):
|
||||
"""
|
||||
Convert Galois field elements from power form to tuple form representation.
|
||||
"""
|
||||
y = zeros(len(self.elements))
|
||||
for idx, i in enumerate(self.elements):
|
||||
if 2**i < 2**self.m:
|
||||
y[idx] = 2**i
|
||||
else:
|
||||
y[idx] = polydivide(2**i, self.prim_poly)
|
||||
return GF(y, self.m)
|
||||
|
||||
def tuple_to_power(self):
|
||||
"""
|
||||
Convert Galois field elements from tuple form to power form representation.
|
||||
"""
|
||||
y = zeros(len(self.elements))
|
||||
for idx, i in enumerate(self.elements):
|
||||
if i != 0:
|
||||
init_state = 1
|
||||
cur_state = 1
|
||||
power = 0
|
||||
while cur_state != i:
|
||||
cur_state = ((cur_state << 1) & (2**self.m-1)) ^ (-((cur_state & 2**(self.m-1)) >> (self.m - 1)) &
|
||||
(self.prim_poly & (2**self.m-1)))
|
||||
power+=1
|
||||
y[idx] = power
|
||||
else:
|
||||
y[idx] = 0
|
||||
return GF(y, self.m)
|
||||
|
||||
def order(self):
|
||||
"""
|
||||
Compute the orders of the Galois field elements.
|
||||
"""
|
||||
orders = zeros(len(self.elements))
|
||||
power_gf = self.tuple_to_power()
|
||||
for idx, i in enumerate(power_gf.elements):
|
||||
orders[idx] = (2**self.m - 1)/(gcd(i, 2**self.m-1))
|
||||
return orders
|
||||
|
||||
def cosets(self):
|
||||
"""
|
||||
Compute the cyclotomic cosets of the Galois field.
|
||||
"""
|
||||
coset_list = []
|
||||
x = self.tuple_to_power().elements
|
||||
mark_list = zeros(len(x))
|
||||
coset_count = 1
|
||||
for idx in range(len(x)):
|
||||
if mark_list[idx] == 0:
|
||||
a = x[idx]
|
||||
mark_list[idx] = coset_count
|
||||
i = 1
|
||||
while (a*(2**i) % (2**self.m-1)) != a:
|
||||
for idx2 in range(len(x)):
|
||||
if (mark_list[idx2] == 0) and (x[idx2] == a*(2**i)%(2**self.m-1)):
|
||||
mark_list[idx2] = coset_count
|
||||
i+=1
|
||||
coset_count+=1
|
||||
|
||||
for counts in range(1, coset_count):
|
||||
coset_list.append(GF(self.elements[mark_list==counts], self.m))
|
||||
|
||||
return coset_list
|
||||
|
||||
def minpolys(self):
|
||||
"""
|
||||
Compute the minimal polynomials for all elements of the Galois field.
|
||||
"""
|
||||
minpol_list = array([])
|
||||
full_gf = GF(arange(2**self.m), self.m)
|
||||
full_cosets = full_gf.cosets()
|
||||
for x in self.elements:
|
||||
for i in range(len(full_cosets)):
|
||||
if x in full_cosets[i].elements:
|
||||
t = array([1, full_cosets[i].elements[0]])[::-1]
|
||||
for root in full_cosets[i].elements[1:]:
|
||||
t2 = concatenate((zeros(len(t)-1), array([1, root]), zeros(len(t)-1)))
|
||||
prod_poly = array([])
|
||||
for n in range(len(t2)-len(t)+1):
|
||||
root_sum = 0
|
||||
for k in range(len(t)):
|
||||
root_sum = root_sum ^ polymultiply(int(t[k]), int(t2[n+k]), self.m, self.prim_poly)
|
||||
prod_poly = concatenate((prod_poly, array([root_sum])))
|
||||
t = prod_poly[::-1]
|
||||
minpol_list = concatenate((minpol_list, array([bitarray2dec(t[::-1])])))
|
||||
|
||||
return minpol_list.astype(int)
|
||||
|
||||
# Divide two polynomials and returns the remainder
|
||||
def polydivide(x, y):
|
||||
r = y
|
||||
while len(bin(r)) >= len(bin(y)):
|
||||
shift_count = len(bin(x)) - len(bin(y))
|
||||
if shift_count > 0:
|
||||
d = y << shift_count
|
||||
else:
|
||||
d = y
|
||||
x = x ^ d
|
||||
r = x
|
||||
return r
|
||||
|
||||
def polymultiply(x, y, m, prim_poly):
|
||||
x_array = dec2bitarray(x, m)
|
||||
y_array = dec2bitarray(y, m)
|
||||
prod = bitarray2dec(convolve(x_array, y_array) % 2)
|
||||
return polydivide(prod, prim_poly)
|
||||
|
||||
|
||||
def poly_to_string(x):
|
||||
|
||||
i = 0
|
||||
polystr = ""
|
||||
while x != 0:
|
||||
y = x%2
|
||||
x = x >> 1
|
||||
if y == 1:
|
||||
polystr = polystr + "x^" + str(i) + " + "
|
||||
i+=1
|
||||
|
||||
return polystr[:-2]
|
84
scripts/commpy/channelcoding/interleavers.py
Normal file
84
scripts/commpy/channelcoding/interleavers.py
Normal file
@ -0,0 +1,84 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
""" Interleavers and De-interleavers """
|
||||
|
||||
from numpy import array, arange, zeros
|
||||
from numpy.random import mtrand
|
||||
|
||||
__all__ = ['RandInterlv']
|
||||
|
||||
class _Interleaver:
|
||||
|
||||
def interlv(self, in_array):
|
||||
""" Interleave input array using the specific interleaver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
in_array : 1D ndarray of ints
|
||||
Input data to be interleaved.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out_array : 1D ndarray of ints
|
||||
Interleaved output data.
|
||||
|
||||
"""
|
||||
out_array = array(map(lambda x: in_array[x], self.p_array))
|
||||
return out_array
|
||||
|
||||
def deinterlv(self, in_array):
|
||||
""" De-interleave input array using the specific interleaver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
in_array : 1D ndarray of ints
|
||||
Input data to be de-interleaved.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out_array : 1D ndarray of ints
|
||||
De-interleaved output data.
|
||||
|
||||
"""
|
||||
out_array = zeros(len(in_array), in_array.dtype)
|
||||
for index, element in enumerate(self.p_array):
|
||||
out_array[element] = in_array[index]
|
||||
return out_array
|
||||
|
||||
class RandInterlv(_Interleaver):
|
||||
""" Random Interleaver.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
length : int
|
||||
Length of the interleaver.
|
||||
|
||||
seed : int
|
||||
Seed to initialize the random number generator
|
||||
which generates the random permutation for
|
||||
interleaving.
|
||||
|
||||
Returns
|
||||
-------
|
||||
random_interleaver : RandInterlv object
|
||||
A random interleaver object.
|
||||
|
||||
Note
|
||||
----
|
||||
The random number generator is the
|
||||
RandomState object from NumPy,
|
||||
which uses the Mersenne Twister algorithm.
|
||||
|
||||
"""
|
||||
def __init__(self, length, seed):
|
||||
rand_gen = mtrand.RandomState(seed)
|
||||
self.p_array = rand_gen.permutation(arange(length))
|
||||
|
||||
|
||||
#class SRandInterlv(_Interleaver):
|
||||
|
||||
|
||||
#class QPPInterlv(_Interleaver):
|
237
scripts/commpy/channelcoding/ldpc.py
Normal file
237
scripts/commpy/channelcoding/ldpc.py
Normal file
@ -0,0 +1,237 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
""" LDPC Codes """
|
||||
import numpy as np
|
||||
|
||||
__all__ = ['get_ldpc_code_params, ldpc_bp_decode']
|
||||
|
||||
MAX_POS_LLR = 38.0
|
||||
MIN_NEG_LLR = -38.0
|
||||
|
||||
def get_ldpc_code_params(ldpc_design_filename):
|
||||
"""
|
||||
Extract parameters from LDPC code design file.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
ldpc_design_filename : string
|
||||
Filename of the LDPC code design file.
|
||||
|
||||
Returns
|
||||
-------
|
||||
ldpc_code_params : dictionary
|
||||
Parameters of the LDPC code.
|
||||
"""
|
||||
|
||||
ldpc_design_file = open(ldpc_design_filename)
|
||||
|
||||
ldpc_code_params = {}
|
||||
|
||||
[n_vnodes, n_cnodes] = [int(x) for x in ldpc_design_file.readline().split(' ')]
|
||||
[max_vnode_deg, max_cnode_deg] = [int(x) for x in ldpc_design_file.readline().split(' ')]
|
||||
vnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32)
|
||||
cnode_deg_list = np.array([int(x) for x in ldpc_design_file.readline().split(' ')[:-1]], np.int32)
|
||||
|
||||
cnode_adj_list = -np.ones([n_cnodes, max_cnode_deg], int)
|
||||
vnode_adj_list = -np.ones([n_vnodes, max_vnode_deg], int)
|
||||
|
||||
for vnode_idx in range(n_vnodes):
|
||||
vnode_adj_list[vnode_idx, 0:vnode_deg_list[vnode_idx]] = \
|
||||
np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')])
|
||||
|
||||
for cnode_idx in range(n_cnodes):
|
||||
cnode_adj_list[cnode_idx, 0:cnode_deg_list[cnode_idx]] = \
|
||||
np.array([int(x)-1 for x in ldpc_design_file.readline().split('\t')])
|
||||
|
||||
cnode_vnode_map = -np.ones([n_cnodes, max_cnode_deg], int)
|
||||
vnode_cnode_map = -np.ones([n_vnodes, max_vnode_deg], int)
|
||||
cnode_list = np.arange(n_cnodes)
|
||||
vnode_list = np.arange(n_vnodes)
|
||||
|
||||
for cnode in range(n_cnodes):
|
||||
for i, vnode in enumerate(cnode_adj_list[cnode, 0:cnode_deg_list[cnode]]):
|
||||
cnode_vnode_map[cnode, i] = cnode_list[np.where(vnode_adj_list[vnode, :] == cnode)]
|
||||
|
||||
for vnode in range(n_vnodes):
|
||||
for i, cnode in enumerate(vnode_adj_list[vnode, 0:vnode_deg_list[vnode]]):
|
||||
vnode_cnode_map[vnode, i] = vnode_list[np.where(cnode_adj_list[cnode, :] == vnode)]
|
||||
|
||||
|
||||
cnode_adj_list_1d = cnode_adj_list.flatten().astype(np.int32)
|
||||
vnode_adj_list_1d = vnode_adj_list.flatten().astype(np.int32)
|
||||
cnode_vnode_map_1d = cnode_vnode_map.flatten().astype(np.int32)
|
||||
vnode_cnode_map_1d = vnode_cnode_map.flatten().astype(np.int32)
|
||||
|
||||
pmat = np.zeros([n_cnodes, n_vnodes], int)
|
||||
for cnode_idx in range(n_cnodes):
|
||||
pmat[cnode_idx, cnode_adj_list[cnode_idx, :]] = 1
|
||||
|
||||
ldpc_code_params['n_vnodes'] = n_vnodes
|
||||
ldpc_code_params['n_cnodes'] = n_cnodes
|
||||
ldpc_code_params['max_cnode_deg'] = max_cnode_deg
|
||||
ldpc_code_params['max_vnode_deg'] = max_vnode_deg
|
||||
ldpc_code_params['cnode_adj_list'] = cnode_adj_list_1d
|
||||
ldpc_code_params['cnode_vnode_map'] = cnode_vnode_map_1d
|
||||
ldpc_code_params['vnode_adj_list'] = vnode_adj_list_1d
|
||||
ldpc_code_params['vnode_cnode_map'] = vnode_cnode_map_1d
|
||||
ldpc_code_params['cnode_deg_list'] = cnode_deg_list
|
||||
ldpc_code_params['vnode_deg_list'] = vnode_deg_list
|
||||
|
||||
ldpc_design_file.close()
|
||||
|
||||
return ldpc_code_params
|
||||
|
||||
def _limit_llr(in_llr):
|
||||
|
||||
out_llr = in_llr
|
||||
|
||||
if in_llr > MAX_POS_LLR:
|
||||
out_llr = MAX_POS_LLR
|
||||
|
||||
if in_llr < MIN_NEG_LLR:
|
||||
out_llr = MIN_NEG_LLR
|
||||
|
||||
return out_llr
|
||||
|
||||
def sum_product_update(cnode_idx, cnode_adj_list, cnode_deg_list, cnode_msgs,
|
||||
vnode_msgs, cnode_vnode_map, max_cnode_deg, max_vnode_deg):
|
||||
|
||||
start_idx = cnode_idx*max_cnode_deg
|
||||
offset = cnode_deg_list[cnode_idx]
|
||||
vnode_list = cnode_adj_list[start_idx:start_idx+offset]
|
||||
vnode_list_msgs_tanh = np.tanh(vnode_msgs[vnode_list*max_vnode_deg +
|
||||
cnode_vnode_map[start_idx:start_idx+offset]]/2.0)
|
||||
msg_prod = np.prod(vnode_list_msgs_tanh)
|
||||
|
||||
# Compute messages on outgoing edges using the incoming message product
|
||||
cnode_msgs[start_idx:start_idx+offset]= 2.0*np.arctanh(msg_prod/vnode_list_msgs_tanh)
|
||||
|
||||
|
||||
def min_sum_update(cnode_idx, cnode_adj_list, cnode_deg_list, cnode_msgs,
|
||||
vnode_msgs, cnode_vnode_map, max_cnode_deg, max_vnode_deg):
|
||||
|
||||
start_idx = cnode_idx*max_cnode_deg
|
||||
offset = cnode_deg_list[cnode_idx]
|
||||
vnode_list = cnode_adj_list[start_idx:start_idx+offset]
|
||||
vnode_list_msgs = vnode_msgs[vnode_list*max_vnode_deg +
|
||||
cnode_vnode_map[start_idx:start_idx+offset]]
|
||||
vnode_list_msgs = np.ma.array(vnode_list_msgs, mask=False)
|
||||
|
||||
# Compute messages on outgoing edges using the incoming messages
|
||||
for i in range(start_idx, start_idx+offset):
|
||||
vnode_list_msgs.mask[i-start_idx] = True
|
||||
cnode_msgs[i] = np.prod(np.sign(vnode_list_msgs))*np.min(np.abs(vnode_list_msgs))
|
||||
vnode_list_msgs.mask[i-start_idx] = False
|
||||
#print cnode_msgs[i]
|
||||
|
||||
def ldpc_bp_decode(llr_vec, ldpc_code_params, decoder_algorithm, n_iters):
|
||||
"""
|
||||
LDPC Decoder using Belief Propagation (BP).
|
||||
|
||||
Parameters
|
||||
----------
|
||||
llr_vec : 1D array of float
|
||||
Received codeword LLR values from the channel.
|
||||
|
||||
ldpc_code_params : dictionary
|
||||
Parameters of the LDPC code.
|
||||
|
||||
decoder_algorithm: string
|
||||
Specify the decoder algorithm type.
|
||||
SPA for Sum-Product Algorithm
|
||||
MSA for Min-Sum Algorithm
|
||||
|
||||
n_iters : int
|
||||
Max. number of iterations of decoding to be done.
|
||||
|
||||
Returns
|
||||
-------
|
||||
dec_word : 1D array of 0's and 1's
|
||||
The codeword after decoding.
|
||||
|
||||
out_llrs : 1D array of float
|
||||
LLR values corresponding to the decoded output.
|
||||
"""
|
||||
|
||||
n_cnodes = ldpc_code_params['n_cnodes']
|
||||
n_vnodes = ldpc_code_params['n_vnodes']
|
||||
max_cnode_deg = ldpc_code_params['max_cnode_deg']
|
||||
max_vnode_deg = ldpc_code_params['max_vnode_deg']
|
||||
cnode_adj_list = ldpc_code_params['cnode_adj_list']
|
||||
cnode_vnode_map = ldpc_code_params['cnode_vnode_map']
|
||||
vnode_adj_list = ldpc_code_params['vnode_adj_list']
|
||||
vnode_cnode_map = ldpc_code_params['vnode_cnode_map']
|
||||
cnode_deg_list = ldpc_code_params['cnode_deg_list']
|
||||
vnode_deg_list = ldpc_code_params['vnode_deg_list']
|
||||
|
||||
dec_word = np.zeros(n_vnodes, int)
|
||||
out_llrs = np.zeros(n_vnodes, int)
|
||||
|
||||
cnode_msgs = np.zeros(n_cnodes*max_cnode_deg)
|
||||
vnode_msgs = np.zeros(n_vnodes*max_vnode_deg)
|
||||
|
||||
_limit_llr_v = np.vectorize(_limit_llr)
|
||||
|
||||
if decoder_algorithm == 'SPA':
|
||||
check_node_update = sum_product_update
|
||||
elif decoder_algorithm == 'MSA':
|
||||
check_node_update = min_sum_update
|
||||
else:
|
||||
raise NameError('Please input a valid decoder_algorithm string.')
|
||||
|
||||
# Initialize vnode messages with the LLR values received
|
||||
for vnode_idx in range(n_vnodes):
|
||||
start_idx = vnode_idx*max_vnode_deg
|
||||
offset = vnode_deg_list[vnode_idx]
|
||||
vnode_msgs[start_idx : start_idx+offset] = llr_vec[vnode_idx]
|
||||
|
||||
# Main loop of Belief Propagation (BP) decoding iterations
|
||||
for iter_cnt in range(n_iters):
|
||||
|
||||
continue_flag = 0
|
||||
|
||||
# Check Node Update
|
||||
for cnode_idx in range(n_cnodes):
|
||||
|
||||
check_node_update(cnode_idx, cnode_adj_list, cnode_deg_list, cnode_msgs,
|
||||
vnode_msgs, cnode_vnode_map, max_cnode_deg, max_vnode_deg)
|
||||
|
||||
# Variable Node Update
|
||||
for vnode_idx in range(n_vnodes):
|
||||
|
||||
# Compute sum of all incoming messages at the variable node
|
||||
start_idx = vnode_idx*max_vnode_deg
|
||||
offset = vnode_deg_list[vnode_idx]
|
||||
cnode_list = vnode_adj_list[start_idx:start_idx+offset]
|
||||
cnode_list_msgs = cnode_msgs[cnode_list*max_cnode_deg + vnode_cnode_map[start_idx:start_idx+offset]]
|
||||
msg_sum = np.sum(cnode_list_msgs)
|
||||
|
||||
# Compute messages on outgoing edges using the incoming message sum
|
||||
vnode_msgs[start_idx:start_idx+offset] = _limit_llr_v(llr_vec[vnode_idx] + msg_sum -
|
||||
cnode_list_msgs)
|
||||
|
||||
# Update output LLRs and decoded word
|
||||
out_llrs[vnode_idx] = llr_vec[vnode_idx] + msg_sum
|
||||
if out_llrs[vnode_idx] > 0:
|
||||
dec_word[vnode_idx] = 0
|
||||
else:
|
||||
dec_word[vnode_idx] = 1
|
||||
|
||||
# Compute if early termination using parity check matrix
|
||||
for cnode_idx in range(n_cnodes):
|
||||
p_sum = 0
|
||||
for i in range(cnode_deg_list[cnode_idx]):
|
||||
p_sum ^= dec_word[cnode_adj_list[cnode_idx*max_cnode_deg + i]]
|
||||
|
||||
if p_sum != 0:
|
||||
continue_flag = 1
|
||||
break
|
||||
|
||||
# Stop iterations
|
||||
if continue_flag == 0:
|
||||
break
|
||||
|
||||
return dec_word, out_llrs
|
0
scripts/commpy/channelcoding/tests/__init__.py
Normal file
0
scripts/commpy/channelcoding/tests/__init__.py
Normal file
21
scripts/commpy/channelcoding/tests/test_algcode.py
Normal file
21
scripts/commpy/channelcoding/tests/test_algcode.py
Normal file
@ -0,0 +1,21 @@
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
from numpy import array
|
||||
from numpy.testing import assert_array_equal
|
||||
from commpy.channelcoding.algcode import cyclic_code_genpoly
|
||||
|
||||
class TestAlgebraicCoding(object):
|
||||
|
||||
def test_cyclic_code_gen_poly(self):
|
||||
code_lengths = array([15, 31])
|
||||
code_dims = array([4, 21])
|
||||
desired_genpolys = array([[2479, 3171, 3929],
|
||||
[1653, 1667, 1503, 1207, 1787, 1561, 1903,
|
||||
1219, 1137, 2013, 1453, 1897, 1975, 1395, 1547]])
|
||||
count = 0
|
||||
for n, k in zip(code_lengths, code_dims):
|
||||
genpolys = cyclic_code_genpoly(n, k)
|
||||
assert_array_equal(genpolys, desired_genpolys[count])
|
||||
count += 1
|
87
scripts/commpy/channelcoding/tests/test_convcode.py
Normal file
87
scripts/commpy/channelcoding/tests/test_convcode.py
Normal file
@ -0,0 +1,87 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
from numpy import array
|
||||
from numpy.random import randint
|
||||
from numpy.testing import assert_array_equal
|
||||
from commpy.channelcoding.convcode import Trellis, conv_encode, viterbi_decode
|
||||
|
||||
class TestConvCode(object):
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
# Convolutional Code 1: G(D) = [1+D^2, 1+D+D^2]
|
||||
memory = array([2])
|
||||
g_matrix = array([[0o5, 0o7]])
|
||||
cls.code_type_1 = 'default'
|
||||
cls.trellis_1 = Trellis(memory, g_matrix, 0, cls.code_type_1)
|
||||
cls.desired_next_state_table_1 = array([[0, 2],
|
||||
[0, 2],
|
||||
[1, 3],
|
||||
[1, 3]])
|
||||
cls.desired_output_table_1 = array([[0, 3],
|
||||
[3, 0],
|
||||
[1, 2],
|
||||
[2, 1]])
|
||||
|
||||
|
||||
# Convolutional Code 2: G(D) = [1 1+D+D^2/1+D]
|
||||
memory = array([2])
|
||||
g_matrix = array([[0o1, 0o7]])
|
||||
feedback = 0o5
|
||||
cls.code_type_2 = 'rsc'
|
||||
cls.trellis_2 = Trellis(memory, g_matrix, feedback, cls.code_type_2)
|
||||
cls.desired_next_state_table_2 = array([[0, 2],
|
||||
[2, 0],
|
||||
[1, 3],
|
||||
[3, 1]])
|
||||
cls.desired_output_table_2 = array([[0, 3],
|
||||
[0, 3],
|
||||
[1, 2],
|
||||
[1, 2]])
|
||||
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
pass
|
||||
|
||||
def test_next_state_table(self):
|
||||
assert_array_equal(self.trellis_1.next_state_table, self.desired_next_state_table_1)
|
||||
assert_array_equal(self.trellis_2.next_state_table, self.desired_next_state_table_2)
|
||||
|
||||
def test_output_table(self):
|
||||
assert_array_equal(self.trellis_1.output_table, self.desired_output_table_1)
|
||||
assert_array_equal(self.trellis_2.output_table, self.desired_output_table_2)
|
||||
|
||||
def test_conv_encode(self):
|
||||
pass
|
||||
|
||||
def test_viterbi_decode(self):
|
||||
pass
|
||||
|
||||
def test_conv_encode_viterbi_decode(self):
|
||||
niters = 10
|
||||
blocklength = 1000
|
||||
|
||||
for i in range(niters):
|
||||
msg = randint(0, 2, blocklength)
|
||||
|
||||
coded_bits = conv_encode(msg, self.trellis_1)
|
||||
decoded_bits = viterbi_decode(coded_bits.astype(float), self.trellis_1, 15)
|
||||
assert_array_equal(decoded_bits[:-2], msg)
|
||||
|
||||
coded_bits = conv_encode(msg, self.trellis_1)
|
||||
coded_syms = 2.0*coded_bits - 1
|
||||
decoded_bits = viterbi_decode(coded_syms, self.trellis_1, 15, 'unquantized')
|
||||
assert_array_equal(decoded_bits[:-2], msg)
|
||||
|
||||
coded_bits = conv_encode(msg, self.trellis_2)
|
||||
decoded_bits = viterbi_decode(coded_bits.astype(float), self.trellis_2, 15)
|
||||
assert_array_equal(decoded_bits[:-2], msg)
|
||||
|
||||
coded_bits = conv_encode(msg, self.trellis_2)
|
||||
coded_syms = 2.0*coded_bits - 1
|
||||
decoded_bits = viterbi_decode(coded_syms, self.trellis_2, 15, 'unquantized')
|
||||
assert_array_equal(decoded_bits[:-2], msg)
|
68
scripts/commpy/channelcoding/tests/test_gfields.py
Normal file
68
scripts/commpy/channelcoding/tests/test_gfields.py
Normal file
@ -0,0 +1,68 @@
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3 clause
|
||||
|
||||
from numpy import array, ones_like, arange
|
||||
from numpy.testing import assert_array_almost_equal, assert_array_equal, assert_, assert_equal
|
||||
from commpy.channelcoding.gfields import GF
|
||||
|
||||
|
||||
class TestGaloisFields(object):
|
||||
|
||||
def test_closure(self):
|
||||
for m in arange(1, 9):
|
||||
x = GF(arange(2**m), m)
|
||||
for a in x.elements:
|
||||
for b in x.elements:
|
||||
assert_((GF(array([a]), m) + GF(array([b]), m)).elements[0] in x.elements)
|
||||
assert_((GF(array([a]), m) * GF(array([b]), m)).elements[0] in x.elements)
|
||||
|
||||
def test_addition(self):
|
||||
m = 3
|
||||
x = GF(arange(2**m), m)
|
||||
y = GF(array([6, 4, 3, 1, 2, 0, 5, 7]), m)
|
||||
z = GF(array([6, 5, 1, 2, 6, 5, 3, 0]), m)
|
||||
assert_array_equal((x+y).elements, z.elements)
|
||||
|
||||
def test_multiplication(self):
|
||||
m = 3
|
||||
x = GF(array([7, 6, 5, 4, 3, 2, 1, 0]), m)
|
||||
y = GF(array([6, 4, 3, 1, 2, 0, 5, 7]), m)
|
||||
z = GF(array([4, 5, 4, 4, 6, 0, 5, 0]), m)
|
||||
assert_array_equal((x*y).elements, z.elements)
|
||||
|
||||
def test_tuple_form(self):
|
||||
m = 3
|
||||
x = GF(arange(0, 2**m-1), m)
|
||||
y = x.power_to_tuple()
|
||||
z = GF(array([1, 2, 4, 3, 6, 7, 5]), m)
|
||||
assert_array_equal(y.elements, z.elements)
|
||||
|
||||
def test_power_form(self):
|
||||
m = 3
|
||||
x = GF(arange(1, 2**m), m)
|
||||
y = x.tuple_to_power()
|
||||
z = GF(array([0, 1, 3, 2, 6, 4, 5]), m)
|
||||
assert_array_equal(y.elements, z.elements)
|
||||
m = 4
|
||||
x = GF(arange(1, 2**m), m)
|
||||
y = x.tuple_to_power()
|
||||
z = GF(array([0, 1, 4, 2, 8, 5, 10, 3, 14, 9, 7, 6, 13, 11, 12]), m)
|
||||
assert_array_equal(y.elements, z.elements)
|
||||
|
||||
def test_order(self):
|
||||
m = 4
|
||||
x = GF(arange(1, 2**m), m)
|
||||
y = x.order()
|
||||
z = array([1, 15, 15, 15, 15, 3, 3, 5, 15, 5, 15, 5, 15, 15, 5])
|
||||
assert_array_equal(y, z)
|
||||
|
||||
def test_minpols(self):
|
||||
m = 4
|
||||
x = GF(arange(2**m), m)
|
||||
z = array([2, 3, 19, 19, 19, 19, 7, 7, 31, 25, 31, 25, 31, 25, 25, 31])
|
||||
assert_array_equal(x.minpolys(), z)
|
||||
m = 6
|
||||
x = GF(array([2, 8, 32, 6, 24, 35, 10, 40, 59, 41, 14, 37]), m)
|
||||
z = array([67, 87, 103, 73, 13, 109, 91, 117, 7, 115, 11, 97])
|
||||
assert_array_equal(x.minpolys(), z)
|
62
scripts/commpy/channelcoding/tests/test_ldpc.py
Normal file
62
scripts/commpy/channelcoding/tests/test_ldpc.py
Normal file
@ -0,0 +1,62 @@
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
from numpy import array, sqrt, zeros
|
||||
from numpy.random import randn
|
||||
from numpy.testing import assert_allclose
|
||||
from commpy.channelcoding.ldpc import get_ldpc_code_params, ldpc_bp_decode
|
||||
from commpy.utilities import hamming_dist
|
||||
import os
|
||||
|
||||
from nose.plugins.attrib import attr
|
||||
|
||||
@attr('slow')
|
||||
class TestLDPCCode(object):
|
||||
|
||||
@classmethod
|
||||
def setup_class(cls):
|
||||
dir = os.path.dirname(__file__)
|
||||
ldpc_design_file_1 = os.path.join(dir, '../designs/ldpc/gallager/96.33.964.txt')
|
||||
#ldpc_design_file_1 = "../designs/ldpc/gallager/96.33.964.txt"
|
||||
cls.ldpc_code_params = get_ldpc_code_params(ldpc_design_file_1)
|
||||
|
||||
@classmethod
|
||||
def teardown_class(cls):
|
||||
pass
|
||||
|
||||
def test_ldpc_bp_decode(self):
|
||||
N = 96
|
||||
k = 48
|
||||
rate = 0.5
|
||||
Es = 1.0
|
||||
snr_list = array([2.0, 2.5])
|
||||
niters = 10000000
|
||||
tx_codeword = zeros(N, int)
|
||||
ldpcbp_iters = 100
|
||||
|
||||
fer_array_ref = array([200.0/1000, 200.0/2000])
|
||||
fer_array_test = zeros(len(snr_list))
|
||||
|
||||
for idx, ebno in enumerate(snr_list):
|
||||
|
||||
noise_std = 1/sqrt((10**(ebno/10.0))*rate*2/Es)
|
||||
fer_cnt_bp = 0
|
||||
|
||||
for iter_cnt in range(niters):
|
||||
|
||||
awgn_array = noise_std * randn(N)
|
||||
rx_word = 1-(2*tx_codeword) + awgn_array
|
||||
rx_llrs = 2.0*rx_word/(noise_std**2)
|
||||
|
||||
[dec_word, out_llrs] = ldpc_bp_decode(rx_llrs, self.ldpc_code_params, 'SPA',
|
||||
ldpcbp_iters)
|
||||
|
||||
num_bit_errors = hamming_dist(tx_codeword, dec_word)
|
||||
if num_bit_errors > 0:
|
||||
fer_cnt_bp += 1
|
||||
|
||||
if fer_cnt_bp >= 200:
|
||||
fer_array_test[idx] = float(fer_cnt_bp)/(iter_cnt+1)
|
||||
break
|
||||
|
||||
assert_allclose(fer_array_test, fer_array_ref, rtol=2e-1, atol=0)
|
332
scripts/commpy/channelcoding/turbo.py
Normal file
332
scripts/commpy/channelcoding/turbo.py
Normal file
@ -0,0 +1,332 @@
|
||||
|
||||
|
||||
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||||
# License: BSD 3-Clause
|
||||
|
||||
""" Turbo Codes """
|
||||
|
||||
from numpy import array, append, zeros, exp, pi, log, empty
|
||||
from commpy.channelcoding import Trellis, conv_encode
|
||||
from commpy.utilities import dec2bitarray, bitarray2dec
|
||||
#from commpy.channelcoding.map_c import backward_recursion, forward_recursion_decoding
|
||||
|
||||
def turbo_encode(msg_bits, trellis1, trellis2, interleaver):
|
||||
""" Turbo Encoder.
|
||||
|
||||
Encode Bits using a parallel concatenated rate-1/3
|
||||
turbo code consisting of two rate-1/2 systematic
|
||||
convolutional component codes.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
msg_bits : 1D ndarray containing {0, 1}
|
||||
Stream of bits to be turbo encoded.
|
||||
|
||||
trellis1 : Trellis object
|
||||
Trellis representation of the
|
||||
first code in the parallel concatenation.
|
||||
|
||||
trellis2 : Trellis object
|
||||
Trellis representation of the
|
||||
second code in the parallel concatenation.
|
||||
|
||||
interleaver : Interleaver object
|
||||
Interleaver used in the turbo code.
|
||||
|
||||
Returns
|
||||
-------
|
||||
[sys_stream, non_sys_stream1, non_sys_stream2] : list of 1D ndarrays
|
||||
Encoded bit streams corresponding
|
||||
to the systematic output
|
||||
|
||||
and the two non-systematic
|
||||
outputs from the two component codes.
|
||||
"""
|
||||
|
||||
stream = conv_encode(msg_bits, trellis1, 'rsc')
|
||||
sys_stream = stream[::2]
|
||||
non_sys_stream_1 = stream[1::2]
|
||||
|
||||
interlv_msg_bits = interleaver.interlv(sys_stream)
|
||||
puncture_matrix = array([[0, 1]])
|
||||
non_sys_stream_2 = conv_encode(interlv_msg_bits, trellis2, 'rsc', puncture_matrix)
|
||||
|
||||
sys_stream = sys_stream[0:-trellis1.total_memory]
|
||||
non_sys_stream_1 = non_sys_stream_1[0:-trellis1.total_memory]
|
||||
non_sys_stream_2 = non_sys_stream_2[0:-trellis2.total_memory]
|
||||
|
||||
return [sys_stream, non_sys_stream_1, non_sys_stream_2]
|
||||
|
||||
|
||||
def _compute_branch_prob(code_bit_0, code_bit_1, rx_symbol_0, rx_symbol_1,
|
||||
noise_variance):
|
||||
|
||||
#cdef np.float64_t code_symbol_0, code_symbol_1, branch_prob, x, y
|
||||
|
||||
code_symbol_0 = 2*code_bit_0 - 1
|
||||
code_symbol_1 = 2*code_bit_1 - 1
|
||||
|
||||
x = rx_symbol_0 - code_symbol_0
|
||||
y = rx_symbol_1 - code_symbol_1
|
||||
|
||||
# Normalized branch transition probability
|
||||
branch_prob = exp(-(x*x + y*y)/(2*noise_variance))
|
||||
|
||||
return branch_prob
|
||||
|
||||
def _backward_recursion(trellis, msg_length, noise_variance,
|
||||
sys_symbols, non_sys_symbols, branch_probs,
|
||||
priors, b_state_metrics):
|
||||
|
||||
n = trellis.n
|
||||
number_states = trellis.number_states
|
||||
number_inputs = trellis.number_inputs
|
||||
|
||||
codeword_array = empty(n, 'int')
|
||||
next_state_table = trellis.next_state_table
|
||||
output_table = trellis.output_table
|
||||
|
||||
# Backward recursion
|
||||
for reverse_time_index in reversed(xrange(1, msg_length+1)):
|
||||
|
||||
for current_state in xrange(number_states):
|
||||
for current_input in xrange(number_inputs):
|
||||
next_state = next_state_table[current_state, current_input]
|
||||
code_symbol = output_table[current_state, current_input]
|
||||
codeword_array = dec2bitarray(code_symbol, n)
|
||||
parity_bit = codeword_array[1]
|
||||
msg_bit = codeword_array[0]
|
||||
rx_symbol_0 = sys_symbols[reverse_time_index-1]
|
||||
rx_symbol_1 = non_sys_symbols[reverse_time_index-1]
|
||||
branch_prob = _compute_branch_prob(msg_bit, parity_bit,
|
||||
rx_symbol_0, rx_symbol_1,
|
||||
noise_variance)
|
||||
branch_probs[current_input, current_state, reverse_time_index-1] = branch_prob
|
||||
b_state_metrics[current_state, reverse_time_index-1] += \
|
||||
(b_state_metrics[next_state, reverse_time_index] * branch_prob *
|
||||
priors[current_input, reverse_time_index-1])
|
||||
|
||||
b_state_metrics[:,reverse_time_index-1] /= \
|
||||
b_state_metrics[:,reverse_time_index-1].sum()
|
||||
|
||||
|
||||
def _forward_recursion_decoding(trellis, mode, msg_length, noise_variance,
|
||||
sys_symbols, non_sys_symbols, b_state_metrics,
|
||||
f_state_metrics, branch_probs, app, L_int,
|
||||
priors, L_ext, decoded_bits):
|
||||
|
||||
n = trellis.n
|
||||
number_states = trellis.number_states
|
||||
number_inputs = trellis.number_inputs
|
||||
|
||||
codeword_array = empty(n, 'int')
|
||||
next_state_table = trellis.next_state_table
|
||||
output_table = trellis.output_table
|
||||
|
||||
# Forward Recursion
|
||||
for time_index in xrange(1, msg_length+1):
|
||||
|
||||
app[:] = 0
|
||||
for current_state in xrange(number_states):
|
||||
for current_input in xrange(number_inputs):
|
||||
next_state = next_state_table[current_state, current_input]
|
||||
branch_prob = branch_probs[current_input, current_state, time_index-1]
|
||||
# Compute the forward state metrics
|
||||
f_state_metrics[next_state, 1] += (f_state_metrics[current_state, 0] *
|
||||
branch_prob *
|
||||
priors[current_input, time_index-1])
|
||||
|
||||
# Compute APP
|
||||
app[current_input] += (f_state_metrics[current_state, 0] *
|
||||
branch_prob *
|
||||
b_state_metrics[next_state, time_index])
|
||||
|
||||
lappr = L_int[time_index-1] + log(app[1]/app[0])
|
||||
L_ext[time_index-1] = lappr
|
||||
|
||||
if mode == 'decode':
|
||||
if lappr > 0:
|
||||
decoded_bits[time_index-1] = 1
|
||||
else:
|
||||
decoded_bits[time_index-1] = 0
|
||||
|
||||
# Normalization of the forward state metrics
|
||||
f_state_metrics[:,1] = f_state_metrics[:,1]/f_state_metrics[:,1].sum()
|
||||
|
||||
f_state_metrics[:,0] = f_state_metrics[:,1]
|
||||
f_state_metrics[:,1] = 0.0
|
||||
|
||||
|
||||
|
||||
|
||||
def map_decode(sys_symbols, non_sys_symbols, trellis, noise_variance, L_int, mode='decode'):
|
||||
""" Maximum a-posteriori probability (MAP) decoder.
|
||||
|
||||
Decodes a stream of convolutionally encoded
|
||||
(rate 1/2) bits using the MAP algorithm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sys_symbols : 1D ndarray
|
||||
Received symbols corresponding to
|
||||
the systematic (first output) bits in
|
||||
the codeword.
|
||||
|
||||
non_sys_symbols : 1D ndarray
|
||||
Received symbols corresponding to the non-systematic
|
||||
(second output) bits in the codeword.
|
||||
|
||||
trellis : Trellis object
|
||||
Trellis representation of the convolutional code.
|
||||
|
||||
noise_variance : float
|
||||
Variance (power) of the AWGN channel.
|
||||
|
||||
L_int : 1D ndarray
|
||||
Array representing the initial intrinsic
|
||||
information for all received
|
||||
symbols.
|
||||
|
||||
Typically all zeros,
|
||||
corresponding to equal prior
|
||||
probabilities of bits 0 and 1.
|
||||
|
||||
mode : str{'decode', 'compute'}, optional
|
||||
The mode in which the MAP decoder is used.
|
||||
'decode' mode returns the decoded bits
|
||||
|
||||
along with the extrinsic information.
|
||||
'compute' mode returns only the
|
||||
extrinsic information.
|
||||
|
||||
Returns
|
||||
-------
|
||||
[L_ext, decoded_bits] : list of two 1D ndarrays
|
||||
The first element of the list is the extrinsic information.
|
||||
The second element of the list is the decoded bits.
|
||||
|
||||
"""
|
||||
|
||||
k = trellis.k
|
||||
n = trellis.n
|
||||
rate = float(k)/n
|
||||
number_states = trellis.number_states
|
||||
number_inputs = trellis.number_inputs
|
||||
|
||||
msg_length = len(sys_symbols)
|
||||
|
||||
# Initialize forward state metrics (alpha)
|
||||
f_state_metrics = zeros([number_states, 2])
|
||||
f_state_metrics[0][0] = 1
|
||||
#print f_state_metrics
|
||||
|
||||
# Initialize backward state metrics (beta)
|
||||
b_state_metrics = zeros([number_states, msg_length+1])
|
||||
b_state_metrics[:,msg_length] = 1
|
||||
|
||||
# Initialize branch transition probabilities (gamma)
|
||||
branch_probs = zeros([number_inputs, number_states, msg_length+1])
|
||||
|
||||
app = zeros(number_inputs)
|
||||
|
||||
lappr = 0
|
||||
|
||||
decoded_bits = zeros(msg_length, 'int')
|
||||
L_ext = zeros(msg_length)
|
||||
|
||||
priors = empty([2, msg_length])
|
||||
priors[0,:] = 1/(1 + exp(L_int))
|
||||
priors[1,:] = 1 - priors[0,:]
|
||||
|
||||
# Backward recursion
|
||||
_backward_recursion(trellis, msg_length, noise_variance, sys_symbols,
|
||||
non_sys_symbols, branch_probs, priors, b_state_metrics)
|
||||
|
||||
# Forward recursion
|
||||
_forward_recursion_decoding(trellis, mode, msg_length, noise_variance, sys_symbols,
|
||||
non_sys_symbols, b_state_metrics, f_state_metrics,
|
||||
branch_probs, app, L_int, priors, L_ext, decoded_bits)
|
||||
|
||||
return [L_ext, decoded_bits]
|
||||
|
||||
|
||||
def turbo_decode(sys_symbols, non_sys_symbols_1, non_sys_symbols_2, trellis,
|
||||
noise_variance, number_iterations, interleaver, L_int = None):
|
||||
""" Turbo Decoder.
|
||||
|
||||
Decodes a stream of convolutionally encoded
|
||||
(rate 1/3) bits using the BCJR algorithm.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
sys_symbols : 1D ndarray
|
||||
Received symbols corresponding to
|
||||
the systematic (first output) bits in the codeword.
|
||||
|
||||
non_sys_symbols_1 : 1D ndarray
|
||||
Received symbols corresponding to
|
||||
the first parity bits in the codeword.
|
||||
|
||||
non_sys_symbols_2 : 1D ndarray
|
||||
Received symbols corresponding to the
|
||||
second parity bits in the codeword.
|
||||
|
||||
trellis : Trellis object
|
||||
Trellis representation of the convolutional codes
|
||||
used in the Turbo code.
|
||||
|
||||
noise_variance : float
|
||||
Variance (power) of the AWGN channel.
|
||||
|
||||
number_iterations : int
|
||||
Number of the iterations of the
|
||||
BCJR algorithm used in turbo decoding.
|
||||
|
||||
interleaver : Interleaver object.
|
||||
Interleaver used in the turbo code.
|
||||
|
||||
L_int : 1D ndarray
|
||||
Array representing the initial intrinsic
|
||||
information for all received
|
||||
symbols.
|
||||
|
||||
Typically all zeros,
|
||||
corresponding to equal prior
|
||||
probabilities of bits 0 and 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
decoded_bits : 1D ndarray of ints containing {0, 1}
|
||||
Decoded bit stream.
|
||||
|
||||
"""
|
||||
if L_int is None:
|
||||
L_int = zeros(len(sys_symbols))
|
||||
|
||||
L_int_1 = L_int
|
||||
|
||||
# Interleave systematic symbols for input to second decoder
|
||||
sys_symbols_i = interleaver.interlv(sys_symbols)
|
||||
|
||||
for iteration_count in xrange(number_iterations):
|
||||
|
||||
# MAP Decoder - 1
|
||||
[L_ext_1, decoded_bits] = map_decode(sys_symbols, non_sys_symbols_1,
|
||||
trellis, noise_variance, L_int_1, 'compute')
|
||||
|
||||
L_ext_1 = L_ext_1 - L_int_1
|
||||
L_int_2 = interleaver.interlv(L_ext_1)
|
||||
if iteration_count == number_iterations - 1:
|
||||
mode = 'decode'
|
||||
else:
|
||||
mode = 'compute'
|
||||
|
||||
# MAP Decoder - 2
|
||||
[L_2, decoded_bits] = map_decode(sys_symbols_i, non_sys_symbols_2,
|
||||
trellis, noise_variance, L_int_2, mode)
|
||||
L_ext_2 = L_2 - L_int_2
|
||||
L_int_1 = interleaver.deinterlv(L_ext_2)
|
||||
|
||||
decoded_bits = interleaver.deinterlv(decoded_bits)
|
||||
|
||||
return decoded_bits
|
Reference in New Issue
Block a user