mirror of
https://github.com/jhshi/openofdm.git
synced 2025-01-27 22:39:17 +00:00
333 lines
11 KiB
Python
333 lines
11 KiB
Python
|
|
||
|
|
||
|
# Authors: Veeresh Taranalli <veeresht@gmail.com>
|
||
|
# License: BSD 3-Clause
|
||
|
|
||
|
""" Turbo Codes """
|
||
|
|
||
|
from numpy import array, append, zeros, exp, pi, log, empty
|
||
|
from commpy.channelcoding import Trellis, conv_encode
|
||
|
from commpy.utilities import dec2bitarray, bitarray2dec
|
||
|
#from commpy.channelcoding.map_c import backward_recursion, forward_recursion_decoding
|
||
|
|
||
|
def turbo_encode(msg_bits, trellis1, trellis2, interleaver):
|
||
|
""" Turbo Encoder.
|
||
|
|
||
|
Encode Bits using a parallel concatenated rate-1/3
|
||
|
turbo code consisting of two rate-1/2 systematic
|
||
|
convolutional component codes.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
msg_bits : 1D ndarray containing {0, 1}
|
||
|
Stream of bits to be turbo encoded.
|
||
|
|
||
|
trellis1 : Trellis object
|
||
|
Trellis representation of the
|
||
|
first code in the parallel concatenation.
|
||
|
|
||
|
trellis2 : Trellis object
|
||
|
Trellis representation of the
|
||
|
second code in the parallel concatenation.
|
||
|
|
||
|
interleaver : Interleaver object
|
||
|
Interleaver used in the turbo code.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
[sys_stream, non_sys_stream1, non_sys_stream2] : list of 1D ndarrays
|
||
|
Encoded bit streams corresponding
|
||
|
to the systematic output
|
||
|
|
||
|
and the two non-systematic
|
||
|
outputs from the two component codes.
|
||
|
"""
|
||
|
|
||
|
stream = conv_encode(msg_bits, trellis1, 'rsc')
|
||
|
sys_stream = stream[::2]
|
||
|
non_sys_stream_1 = stream[1::2]
|
||
|
|
||
|
interlv_msg_bits = interleaver.interlv(sys_stream)
|
||
|
puncture_matrix = array([[0, 1]])
|
||
|
non_sys_stream_2 = conv_encode(interlv_msg_bits, trellis2, 'rsc', puncture_matrix)
|
||
|
|
||
|
sys_stream = sys_stream[0:-trellis1.total_memory]
|
||
|
non_sys_stream_1 = non_sys_stream_1[0:-trellis1.total_memory]
|
||
|
non_sys_stream_2 = non_sys_stream_2[0:-trellis2.total_memory]
|
||
|
|
||
|
return [sys_stream, non_sys_stream_1, non_sys_stream_2]
|
||
|
|
||
|
|
||
|
def _compute_branch_prob(code_bit_0, code_bit_1, rx_symbol_0, rx_symbol_1,
|
||
|
noise_variance):
|
||
|
|
||
|
#cdef np.float64_t code_symbol_0, code_symbol_1, branch_prob, x, y
|
||
|
|
||
|
code_symbol_0 = 2*code_bit_0 - 1
|
||
|
code_symbol_1 = 2*code_bit_1 - 1
|
||
|
|
||
|
x = rx_symbol_0 - code_symbol_0
|
||
|
y = rx_symbol_1 - code_symbol_1
|
||
|
|
||
|
# Normalized branch transition probability
|
||
|
branch_prob = exp(-(x*x + y*y)/(2*noise_variance))
|
||
|
|
||
|
return branch_prob
|
||
|
|
||
|
def _backward_recursion(trellis, msg_length, noise_variance,
|
||
|
sys_symbols, non_sys_symbols, branch_probs,
|
||
|
priors, b_state_metrics):
|
||
|
|
||
|
n = trellis.n
|
||
|
number_states = trellis.number_states
|
||
|
number_inputs = trellis.number_inputs
|
||
|
|
||
|
codeword_array = empty(n, 'int')
|
||
|
next_state_table = trellis.next_state_table
|
||
|
output_table = trellis.output_table
|
||
|
|
||
|
# Backward recursion
|
||
|
for reverse_time_index in reversed(xrange(1, msg_length+1)):
|
||
|
|
||
|
for current_state in xrange(number_states):
|
||
|
for current_input in xrange(number_inputs):
|
||
|
next_state = next_state_table[current_state, current_input]
|
||
|
code_symbol = output_table[current_state, current_input]
|
||
|
codeword_array = dec2bitarray(code_symbol, n)
|
||
|
parity_bit = codeword_array[1]
|
||
|
msg_bit = codeword_array[0]
|
||
|
rx_symbol_0 = sys_symbols[reverse_time_index-1]
|
||
|
rx_symbol_1 = non_sys_symbols[reverse_time_index-1]
|
||
|
branch_prob = _compute_branch_prob(msg_bit, parity_bit,
|
||
|
rx_symbol_0, rx_symbol_1,
|
||
|
noise_variance)
|
||
|
branch_probs[current_input, current_state, reverse_time_index-1] = branch_prob
|
||
|
b_state_metrics[current_state, reverse_time_index-1] += \
|
||
|
(b_state_metrics[next_state, reverse_time_index] * branch_prob *
|
||
|
priors[current_input, reverse_time_index-1])
|
||
|
|
||
|
b_state_metrics[:,reverse_time_index-1] /= \
|
||
|
b_state_metrics[:,reverse_time_index-1].sum()
|
||
|
|
||
|
|
||
|
def _forward_recursion_decoding(trellis, mode, msg_length, noise_variance,
|
||
|
sys_symbols, non_sys_symbols, b_state_metrics,
|
||
|
f_state_metrics, branch_probs, app, L_int,
|
||
|
priors, L_ext, decoded_bits):
|
||
|
|
||
|
n = trellis.n
|
||
|
number_states = trellis.number_states
|
||
|
number_inputs = trellis.number_inputs
|
||
|
|
||
|
codeword_array = empty(n, 'int')
|
||
|
next_state_table = trellis.next_state_table
|
||
|
output_table = trellis.output_table
|
||
|
|
||
|
# Forward Recursion
|
||
|
for time_index in xrange(1, msg_length+1):
|
||
|
|
||
|
app[:] = 0
|
||
|
for current_state in xrange(number_states):
|
||
|
for current_input in xrange(number_inputs):
|
||
|
next_state = next_state_table[current_state, current_input]
|
||
|
branch_prob = branch_probs[current_input, current_state, time_index-1]
|
||
|
# Compute the forward state metrics
|
||
|
f_state_metrics[next_state, 1] += (f_state_metrics[current_state, 0] *
|
||
|
branch_prob *
|
||
|
priors[current_input, time_index-1])
|
||
|
|
||
|
# Compute APP
|
||
|
app[current_input] += (f_state_metrics[current_state, 0] *
|
||
|
branch_prob *
|
||
|
b_state_metrics[next_state, time_index])
|
||
|
|
||
|
lappr = L_int[time_index-1] + log(app[1]/app[0])
|
||
|
L_ext[time_index-1] = lappr
|
||
|
|
||
|
if mode == 'decode':
|
||
|
if lappr > 0:
|
||
|
decoded_bits[time_index-1] = 1
|
||
|
else:
|
||
|
decoded_bits[time_index-1] = 0
|
||
|
|
||
|
# Normalization of the forward state metrics
|
||
|
f_state_metrics[:,1] = f_state_metrics[:,1]/f_state_metrics[:,1].sum()
|
||
|
|
||
|
f_state_metrics[:,0] = f_state_metrics[:,1]
|
||
|
f_state_metrics[:,1] = 0.0
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
def map_decode(sys_symbols, non_sys_symbols, trellis, noise_variance, L_int, mode='decode'):
|
||
|
""" Maximum a-posteriori probability (MAP) decoder.
|
||
|
|
||
|
Decodes a stream of convolutionally encoded
|
||
|
(rate 1/2) bits using the MAP algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sys_symbols : 1D ndarray
|
||
|
Received symbols corresponding to
|
||
|
the systematic (first output) bits in
|
||
|
the codeword.
|
||
|
|
||
|
non_sys_symbols : 1D ndarray
|
||
|
Received symbols corresponding to the non-systematic
|
||
|
(second output) bits in the codeword.
|
||
|
|
||
|
trellis : Trellis object
|
||
|
Trellis representation of the convolutional code.
|
||
|
|
||
|
noise_variance : float
|
||
|
Variance (power) of the AWGN channel.
|
||
|
|
||
|
L_int : 1D ndarray
|
||
|
Array representing the initial intrinsic
|
||
|
information for all received
|
||
|
symbols.
|
||
|
|
||
|
Typically all zeros,
|
||
|
corresponding to equal prior
|
||
|
probabilities of bits 0 and 1.
|
||
|
|
||
|
mode : str{'decode', 'compute'}, optional
|
||
|
The mode in which the MAP decoder is used.
|
||
|
'decode' mode returns the decoded bits
|
||
|
|
||
|
along with the extrinsic information.
|
||
|
'compute' mode returns only the
|
||
|
extrinsic information.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
[L_ext, decoded_bits] : list of two 1D ndarrays
|
||
|
The first element of the list is the extrinsic information.
|
||
|
The second element of the list is the decoded bits.
|
||
|
|
||
|
"""
|
||
|
|
||
|
k = trellis.k
|
||
|
n = trellis.n
|
||
|
rate = float(k)/n
|
||
|
number_states = trellis.number_states
|
||
|
number_inputs = trellis.number_inputs
|
||
|
|
||
|
msg_length = len(sys_symbols)
|
||
|
|
||
|
# Initialize forward state metrics (alpha)
|
||
|
f_state_metrics = zeros([number_states, 2])
|
||
|
f_state_metrics[0][0] = 1
|
||
|
#print f_state_metrics
|
||
|
|
||
|
# Initialize backward state metrics (beta)
|
||
|
b_state_metrics = zeros([number_states, msg_length+1])
|
||
|
b_state_metrics[:,msg_length] = 1
|
||
|
|
||
|
# Initialize branch transition probabilities (gamma)
|
||
|
branch_probs = zeros([number_inputs, number_states, msg_length+1])
|
||
|
|
||
|
app = zeros(number_inputs)
|
||
|
|
||
|
lappr = 0
|
||
|
|
||
|
decoded_bits = zeros(msg_length, 'int')
|
||
|
L_ext = zeros(msg_length)
|
||
|
|
||
|
priors = empty([2, msg_length])
|
||
|
priors[0,:] = 1/(1 + exp(L_int))
|
||
|
priors[1,:] = 1 - priors[0,:]
|
||
|
|
||
|
# Backward recursion
|
||
|
_backward_recursion(trellis, msg_length, noise_variance, sys_symbols,
|
||
|
non_sys_symbols, branch_probs, priors, b_state_metrics)
|
||
|
|
||
|
# Forward recursion
|
||
|
_forward_recursion_decoding(trellis, mode, msg_length, noise_variance, sys_symbols,
|
||
|
non_sys_symbols, b_state_metrics, f_state_metrics,
|
||
|
branch_probs, app, L_int, priors, L_ext, decoded_bits)
|
||
|
|
||
|
return [L_ext, decoded_bits]
|
||
|
|
||
|
|
||
|
def turbo_decode(sys_symbols, non_sys_symbols_1, non_sys_symbols_2, trellis,
|
||
|
noise_variance, number_iterations, interleaver, L_int = None):
|
||
|
""" Turbo Decoder.
|
||
|
|
||
|
Decodes a stream of convolutionally encoded
|
||
|
(rate 1/3) bits using the BCJR algorithm.
|
||
|
|
||
|
Parameters
|
||
|
----------
|
||
|
sys_symbols : 1D ndarray
|
||
|
Received symbols corresponding to
|
||
|
the systematic (first output) bits in the codeword.
|
||
|
|
||
|
non_sys_symbols_1 : 1D ndarray
|
||
|
Received symbols corresponding to
|
||
|
the first parity bits in the codeword.
|
||
|
|
||
|
non_sys_symbols_2 : 1D ndarray
|
||
|
Received symbols corresponding to the
|
||
|
second parity bits in the codeword.
|
||
|
|
||
|
trellis : Trellis object
|
||
|
Trellis representation of the convolutional codes
|
||
|
used in the Turbo code.
|
||
|
|
||
|
noise_variance : float
|
||
|
Variance (power) of the AWGN channel.
|
||
|
|
||
|
number_iterations : int
|
||
|
Number of the iterations of the
|
||
|
BCJR algorithm used in turbo decoding.
|
||
|
|
||
|
interleaver : Interleaver object.
|
||
|
Interleaver used in the turbo code.
|
||
|
|
||
|
L_int : 1D ndarray
|
||
|
Array representing the initial intrinsic
|
||
|
information for all received
|
||
|
symbols.
|
||
|
|
||
|
Typically all zeros,
|
||
|
corresponding to equal prior
|
||
|
probabilities of bits 0 and 1.
|
||
|
|
||
|
Returns
|
||
|
-------
|
||
|
decoded_bits : 1D ndarray of ints containing {0, 1}
|
||
|
Decoded bit stream.
|
||
|
|
||
|
"""
|
||
|
if L_int is None:
|
||
|
L_int = zeros(len(sys_symbols))
|
||
|
|
||
|
L_int_1 = L_int
|
||
|
|
||
|
# Interleave systematic symbols for input to second decoder
|
||
|
sys_symbols_i = interleaver.interlv(sys_symbols)
|
||
|
|
||
|
for iteration_count in xrange(number_iterations):
|
||
|
|
||
|
# MAP Decoder - 1
|
||
|
[L_ext_1, decoded_bits] = map_decode(sys_symbols, non_sys_symbols_1,
|
||
|
trellis, noise_variance, L_int_1, 'compute')
|
||
|
|
||
|
L_ext_1 = L_ext_1 - L_int_1
|
||
|
L_int_2 = interleaver.interlv(L_ext_1)
|
||
|
if iteration_count == number_iterations - 1:
|
||
|
mode = 'decode'
|
||
|
else:
|
||
|
mode = 'compute'
|
||
|
|
||
|
# MAP Decoder - 2
|
||
|
[L_2, decoded_bits] = map_decode(sys_symbols_i, non_sys_symbols_2,
|
||
|
trellis, noise_variance, L_int_2, mode)
|
||
|
L_ext_2 = L_2 - L_int_2
|
||
|
L_int_1 = interleaver.deinterlv(L_ext_2)
|
||
|
|
||
|
decoded_bits = interleaver.deinterlv(decoded_bits)
|
||
|
|
||
|
return decoded_bits
|