mirror of
https://github.com/jhshi/openofdm.git
synced 2024-12-24 07:46:55 +00:00
954 lines
37 KiB
Coq
954 lines
37 KiB
Coq
|
|
||
|
`timescale 1 ns / 1 ps
|
||
|
|
||
|
module dot11zynq_S00_AXI #
|
||
|
(
|
||
|
// Users to add parameters here
|
||
|
|
||
|
// User parameters ends
|
||
|
// Do not modify the parameters beyond this line
|
||
|
|
||
|
// Width of S_AXI data bus
|
||
|
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||
|
// Width of S_AXI address bus
|
||
|
parameter integer C_S_AXI_ADDR_WIDTH = 7
|
||
|
)
|
||
|
(
|
||
|
// Users to add ports here
|
||
|
input wire enable,
|
||
|
input wire [31:0] sample_in,
|
||
|
input wire sample_in_strobe,
|
||
|
|
||
|
output wire trigger,
|
||
|
output wire ofdm_byte_valid,
|
||
|
output wire [7:0] ofdm_byte,
|
||
|
output wire [63:0] data_out, // only has payload, doesn't have signal
|
||
|
output wire data_out_valid,
|
||
|
output wire fcs_valid,
|
||
|
output wire fcs_invalid,
|
||
|
|
||
|
output wire sig_valid,
|
||
|
output wire sig_invalid,
|
||
|
output reg [2:0] mcs_io,
|
||
|
output wire [11:0] pkt_len_io,
|
||
|
|
||
|
output wire [6:0] ht_mcs_io,
|
||
|
output wire [15:0] ht_pkt_len_io,
|
||
|
output wire ht_sig_invalid,
|
||
|
output wire ht_sig_valid,
|
||
|
output reg ht_unsupported,
|
||
|
|
||
|
// ports to interract with fifo
|
||
|
input wire fifo_empty,
|
||
|
output reg rd_en,
|
||
|
output wire fifo_rst,
|
||
|
// User ports ends
|
||
|
// Do not modify the ports beyond this line
|
||
|
|
||
|
// Global Clock Signal
|
||
|
input wire S_AXI_ACLK,
|
||
|
// Global Reset Signal. This Signal is Active LOW
|
||
|
input wire S_AXI_ARESETN,
|
||
|
// Write address (issued by master, acceped by Slave)
|
||
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
||
|
// Write channel Protection type. This signal indicates the
|
||
|
// privilege and security level of the transaction, and whether
|
||
|
// the transaction is a data access or an instruction access.
|
||
|
input wire [2 : 0] S_AXI_AWPROT,
|
||
|
// Write address valid. This signal indicates that the master signaling
|
||
|
// valid write address and control information.
|
||
|
input wire S_AXI_AWVALID,
|
||
|
// Write address ready. This signal indicates that the slave is ready
|
||
|
// to accept an address and associated control signals.
|
||
|
output wire S_AXI_AWREADY,
|
||
|
// Write data (issued by master, acceped by Slave)
|
||
|
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
||
|
// Write strobes. This signal indicates which byte lanes hold
|
||
|
// valid data. There is one write strobe bit for each eight
|
||
|
// bits of the write data bus.
|
||
|
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
||
|
// Write valid. This signal indicates that valid write
|
||
|
// data and strobes are available.
|
||
|
input wire S_AXI_WVALID,
|
||
|
// Write ready. This signal indicates that the slave
|
||
|
// can accept the write data.
|
||
|
output wire S_AXI_WREADY,
|
||
|
// Write response. This signal indicates the status
|
||
|
// of the write transaction.
|
||
|
output wire [1 : 0] S_AXI_BRESP,
|
||
|
// Write response valid. This signal indicates that the channel
|
||
|
// is signaling a valid write response.
|
||
|
output wire S_AXI_BVALID,
|
||
|
// Response ready. This signal indicates that the master
|
||
|
// can accept a write response.
|
||
|
input wire S_AXI_BREADY,
|
||
|
// Read address (issued by master, acceped by Slave)
|
||
|
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
||
|
// Protection type. This signal indicates the privilege
|
||
|
// and security level of the transaction, and whether the
|
||
|
// transaction is a data access or an instruction access.
|
||
|
input wire [2 : 0] S_AXI_ARPROT,
|
||
|
// Read address valid. This signal indicates that the channel
|
||
|
// is signaling valid read address and control information.
|
||
|
input wire S_AXI_ARVALID,
|
||
|
// Read address ready. This signal indicates that the slave is
|
||
|
// ready to accept an address and associated control signals.
|
||
|
output wire S_AXI_ARREADY,
|
||
|
// Read data (issued by slave)
|
||
|
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
||
|
// Read response. This signal indicates the status of the
|
||
|
// read transfer.
|
||
|
output wire [1 : 0] S_AXI_RRESP,
|
||
|
// Read valid. This signal indicates that the channel is
|
||
|
// signaling the required read data.
|
||
|
output wire S_AXI_RVALID,
|
||
|
// Read ready. This signal indicates that the master can
|
||
|
// accept the read data and response information.
|
||
|
input wire S_AXI_RREADY
|
||
|
);
|
||
|
|
||
|
// AXI4LITE signals
|
||
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
||
|
reg axi_awready;
|
||
|
reg axi_wready;
|
||
|
reg [1 : 0] axi_bresp;
|
||
|
reg axi_bvalid;
|
||
|
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
||
|
reg axi_arready;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
||
|
reg [1 : 0] axi_rresp;
|
||
|
reg axi_rvalid;
|
||
|
|
||
|
// Example-specific design signals
|
||
|
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
||
|
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
||
|
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
||
|
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
||
|
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
||
|
localparam integer OPT_MEM_ADDR_BITS = 4;
|
||
|
|
||
|
// openofdm local parameters for ht signal condition
|
||
|
// erros in HT-SIGNAL
|
||
|
localparam E_UNSUPPORTED_MCS = 1;
|
||
|
localparam E_UNSUPPORTED_CBW = 2;
|
||
|
localparam E_HT_WRONG_RSVD = 3;
|
||
|
localparam E_UNSUPPORTED_STBC = 4;
|
||
|
localparam E_UNSUPPORTED_FEC = 5;
|
||
|
localparam E_UNSUPPORTED_SGI = 6;
|
||
|
localparam E_UNSUPPORTED_SPATIAL = 7;
|
||
|
localparam E_HT_WRONG_TAIL = 8;
|
||
|
localparam E_WRONG_CRC = 9;
|
||
|
|
||
|
//----------------------------------------------
|
||
|
//-- Signals for user logic register space example
|
||
|
//------------------------------------------------
|
||
|
//-- Number of Slave Registers 32
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg4;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg5;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg6;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg7;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg8;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg9;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg10;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg11;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg12;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg13;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg14;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg15;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg16;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg17;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg18;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg19;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg20;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg21;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg22;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg23;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg24;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg25;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg26;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg27;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg28;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg29;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg30;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg31;
|
||
|
wire slv_reg_rden;
|
||
|
wire slv_reg_wren;
|
||
|
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
||
|
integer byte_index;
|
||
|
reg aw_en;
|
||
|
|
||
|
// I/O Connections assignments
|
||
|
|
||
|
assign S_AXI_AWREADY = axi_awready;
|
||
|
assign S_AXI_WREADY = axi_wready;
|
||
|
assign S_AXI_BRESP = axi_bresp;
|
||
|
assign S_AXI_BVALID = axi_bvalid;
|
||
|
assign S_AXI_ARREADY = axi_arready;
|
||
|
assign S_AXI_RDATA = axi_rdata;
|
||
|
assign S_AXI_RRESP = axi_rresp;
|
||
|
assign S_AXI_RVALID = axi_rvalid;
|
||
|
// Implement axi_awready generation
|
||
|
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
||
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
||
|
// de-asserted when reset is low.
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_awready <= 1'b0;
|
||
|
aw_en <= 1'b1;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||
|
begin
|
||
|
// slave is ready to accept write address when
|
||
|
// there is a valid write address and write data
|
||
|
// on the write address and data bus. This design
|
||
|
// expects no outstanding transactions.
|
||
|
axi_awready <= 1'b1;
|
||
|
aw_en <= 1'b0;
|
||
|
end
|
||
|
else if (S_AXI_BREADY && axi_bvalid)
|
||
|
begin
|
||
|
aw_en <= 1'b1;
|
||
|
axi_awready <= 1'b0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
axi_awready <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement axi_awaddr latching
|
||
|
// This process is used to latch the address when both
|
||
|
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_awaddr <= 0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||
|
begin
|
||
|
// Write Address latching
|
||
|
axi_awaddr <= S_AXI_AWADDR;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement axi_wready generation
|
||
|
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
||
|
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
||
|
// de-asserted when reset is low.
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_wready <= 1'b0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
|
||
|
begin
|
||
|
// slave is ready to accept write data when
|
||
|
// there is a valid write address and write data
|
||
|
// on the write address and data bus. This design
|
||
|
// expects no outstanding transactions.
|
||
|
axi_wready <= 1'b1;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
axi_wready <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement memory mapped register select and write logic generation
|
||
|
// The write data is accepted and written to memory mapped registers when
|
||
|
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
||
|
// select byte enables of slave registers while writing.
|
||
|
// These registers are cleared when reset (active low) is applied.
|
||
|
// Slave register write enable is asserted when valid address and data are available
|
||
|
// and the slave is ready to accept the write address and write data.
|
||
|
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
slv_reg0 <= 32'd100; // power_thresh register, 16 bit LSB used, MSB used as general reset
|
||
|
slv_reg1 <= 32'd80; // power window register, 16 bit LSB used
|
||
|
slv_reg2 <= 32'd5000000; // num sample to skip register, 32 bit used
|
||
|
slv_reg3 <= 32'd100; // min plateau for short synq to be detected
|
||
|
slv_reg4 <= 0;
|
||
|
slv_reg5 <= 0;
|
||
|
slv_reg6 <= 0;
|
||
|
slv_reg7 <= 0;
|
||
|
slv_reg8 <= 0;
|
||
|
slv_reg9 <= 0;
|
||
|
slv_reg10 <= 0;
|
||
|
slv_reg11 <= 0;
|
||
|
slv_reg12 <= 0;
|
||
|
slv_reg13 <= 0;
|
||
|
slv_reg14 <= 0;
|
||
|
slv_reg15 <= 0;
|
||
|
// slv_reg16 <= 0;
|
||
|
// slv_reg17 <= 0;
|
||
|
// slv_reg18 <= 0;
|
||
|
// slv_reg19 <= 0;
|
||
|
// slv_reg20 <= 0;
|
||
|
slv_reg21 <= 0;
|
||
|
slv_reg22 <= 0;
|
||
|
slv_reg23 <= 0;
|
||
|
slv_reg24 <= 0;
|
||
|
slv_reg25 <= 0;
|
||
|
slv_reg26 <= 0;
|
||
|
slv_reg27 <= 0;
|
||
|
slv_reg28 <= 0;
|
||
|
slv_reg29 <= 0;
|
||
|
slv_reg30 <= 0;
|
||
|
slv_reg31 <= 0;
|
||
|
end
|
||
|
else begin
|
||
|
if (slv_reg_wren)
|
||
|
begin
|
||
|
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||
|
5'h00:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 0
|
||
|
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h01:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 1
|
||
|
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h02:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 2
|
||
|
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h03:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 3
|
||
|
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h04:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 4
|
||
|
slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h05:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 5
|
||
|
slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h06:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 6
|
||
|
slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h07:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 7
|
||
|
slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h08:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 8
|
||
|
slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h09:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 9
|
||
|
slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0A:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 10
|
||
|
slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0B:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 11
|
||
|
slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0C:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 12
|
||
|
slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0D:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 13
|
||
|
slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0E:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 14
|
||
|
slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h0F:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 15
|
||
|
slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
// 5'h10:
|
||
|
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// // Respective byte enables are asserted as per write strobes
|
||
|
// // Slave register 16
|
||
|
// slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
// end
|
||
|
// 5'h11:
|
||
|
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// // Respective byte enables are asserted as per write strobes
|
||
|
// // Slave register 17
|
||
|
// slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
// end
|
||
|
// 5'h12:
|
||
|
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// // Respective byte enables are asserted as per write strobes
|
||
|
// // Slave register 18
|
||
|
// slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
// end
|
||
|
// 5'h13:
|
||
|
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// // Respective byte enables are asserted as per write strobes
|
||
|
// // Slave register 19
|
||
|
// slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
// end
|
||
|
// 5'h14:
|
||
|
// for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
// if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// // Respective byte enables are asserted as per write strobes
|
||
|
// // Slave register 20
|
||
|
// slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
// end
|
||
|
5'h15:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 21
|
||
|
slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h16:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 22
|
||
|
slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h17:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 23
|
||
|
slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h18:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 24
|
||
|
slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h19:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 25
|
||
|
slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1A:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 26
|
||
|
slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1B:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 27
|
||
|
slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1C:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 28
|
||
|
slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1D:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 29
|
||
|
slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1E:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 30
|
||
|
slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
5'h1F:
|
||
|
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||
|
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||
|
// Respective byte enables are asserted as per write strobes
|
||
|
// Slave register 31
|
||
|
slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||
|
end
|
||
|
default : begin
|
||
|
slv_reg0 <= slv_reg0;
|
||
|
slv_reg1 <= slv_reg1;
|
||
|
slv_reg2 <= slv_reg2;
|
||
|
slv_reg3 <= slv_reg3;
|
||
|
slv_reg4 <= slv_reg4;
|
||
|
slv_reg5 <= slv_reg5;
|
||
|
slv_reg6 <= slv_reg6;
|
||
|
slv_reg7 <= slv_reg7;
|
||
|
slv_reg8 <= slv_reg8;
|
||
|
slv_reg9 <= slv_reg9;
|
||
|
slv_reg10 <= slv_reg10;
|
||
|
slv_reg11 <= slv_reg11;
|
||
|
slv_reg12 <= slv_reg12;
|
||
|
slv_reg13 <= slv_reg13;
|
||
|
slv_reg14 <= slv_reg14;
|
||
|
slv_reg15 <= slv_reg15;
|
||
|
// slv_reg16 <= slv_reg16;
|
||
|
// slv_reg17 <= slv_reg17;
|
||
|
// slv_reg18 <= slv_reg18;
|
||
|
// slv_reg19 <= slv_reg19;
|
||
|
// slv_reg20 <= slv_reg20;
|
||
|
slv_reg21 <= slv_reg21;
|
||
|
slv_reg22 <= slv_reg22;
|
||
|
slv_reg23 <= slv_reg23;
|
||
|
slv_reg24 <= slv_reg24;
|
||
|
slv_reg25 <= slv_reg25;
|
||
|
slv_reg26 <= slv_reg26;
|
||
|
slv_reg27 <= slv_reg27;
|
||
|
slv_reg28 <= slv_reg28;
|
||
|
slv_reg29 <= slv_reg29;
|
||
|
slv_reg30 <= slv_reg30;
|
||
|
slv_reg31 <= slv_reg31;
|
||
|
end
|
||
|
endcase
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement write response logic generation
|
||
|
// The write response and response valid signals are asserted by the slave
|
||
|
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
||
|
// This marks the acceptance of address and indicates the status of
|
||
|
// write transaction.
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_bvalid <= 0;
|
||
|
axi_bresp <= 2'b0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
||
|
begin
|
||
|
// indicates a valid write response is available
|
||
|
axi_bvalid <= 1'b1;
|
||
|
axi_bresp <= 2'b0; // 'OKAY' response
|
||
|
end // work error responses in future
|
||
|
else
|
||
|
begin
|
||
|
if (S_AXI_BREADY && axi_bvalid)
|
||
|
//check if bready is asserted while bvalid is high)
|
||
|
//(there is a possibility that bready is always asserted high)
|
||
|
begin
|
||
|
axi_bvalid <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement axi_arready generation
|
||
|
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
||
|
// S_AXI_ARVALID is asserted. axi_awready is
|
||
|
// de-asserted when reset (active low) is asserted.
|
||
|
// The read address is also latched when S_AXI_ARVALID is
|
||
|
// asserted. axi_araddr is reset to zero on reset assertion.
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_arready <= 1'b0;
|
||
|
axi_araddr <= 32'b0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (~axi_arready && S_AXI_ARVALID)
|
||
|
begin
|
||
|
// indicates that the slave has acceped the valid read address
|
||
|
axi_arready <= 1'b1;
|
||
|
// Read address latching
|
||
|
axi_araddr <= S_AXI_ARADDR;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
axi_arready <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement axi_arvalid generation
|
||
|
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
||
|
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
||
|
// data are available on the axi_rdata bus at this instance. The
|
||
|
// assertion of axi_rvalid marks the validity of read data on the
|
||
|
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
||
|
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
||
|
// cleared to zero on reset (active low).
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_rvalid <= 0;
|
||
|
axi_rresp <= 0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
||
|
begin
|
||
|
// Valid read data is available at the read data bus
|
||
|
axi_rvalid <= 1'b1;
|
||
|
axi_rresp <= 2'b0; // 'OKAY' response
|
||
|
end
|
||
|
else if (axi_rvalid && S_AXI_RREADY)
|
||
|
begin
|
||
|
// Read data is accepted by the master
|
||
|
axi_rvalid <= 1'b0;
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Implement memory mapped register select and read logic generation
|
||
|
// Slave register read enable is asserted when valid address is available
|
||
|
// and the slave is ready to accept the read address.
|
||
|
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
||
|
always @(*)
|
||
|
begin
|
||
|
// Address decoding for reading registers
|
||
|
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||
|
5'h00 : reg_data_out <= slv_reg0;
|
||
|
5'h01 : reg_data_out <= slv_reg1;
|
||
|
5'h02 : reg_data_out <= slv_reg2;
|
||
|
5'h03 : reg_data_out <= slv_reg3;
|
||
|
5'h04 : reg_data_out <= slv_reg4;
|
||
|
5'h05 : reg_data_out <= slv_reg5;
|
||
|
5'h06 : reg_data_out <= slv_reg6;
|
||
|
5'h07 : reg_data_out <= slv_reg7;
|
||
|
5'h08 : reg_data_out <= slv_reg8;
|
||
|
5'h09 : reg_data_out <= slv_reg9;
|
||
|
5'h0A : reg_data_out <= slv_reg10;
|
||
|
5'h0B : reg_data_out <= slv_reg11;
|
||
|
5'h0C : reg_data_out <= slv_reg12;
|
||
|
5'h0D : reg_data_out <= slv_reg13;
|
||
|
5'h0E : reg_data_out <= slv_reg14;
|
||
|
5'h0F : reg_data_out <= slv_reg15;
|
||
|
5'h10 : reg_data_out <= slv_reg16;
|
||
|
5'h11 : reg_data_out <= slv_reg17;
|
||
|
5'h12 : reg_data_out <= slv_reg18;
|
||
|
5'h13 : reg_data_out <= slv_reg19;
|
||
|
5'h14 : reg_data_out <= slv_reg20;
|
||
|
5'h15 : reg_data_out <= slv_reg21;
|
||
|
5'h16 : reg_data_out <= slv_reg22;
|
||
|
5'h17 : reg_data_out <= slv_reg23;
|
||
|
5'h18 : reg_data_out <= slv_reg24;
|
||
|
5'h19 : reg_data_out <= slv_reg25;
|
||
|
5'h1A : reg_data_out <= slv_reg26;
|
||
|
5'h1B : reg_data_out <= slv_reg27;
|
||
|
5'h1C : reg_data_out <= slv_reg28;
|
||
|
5'h1D : reg_data_out <= slv_reg29;
|
||
|
5'h1E : reg_data_out <= slv_reg30;
|
||
|
5'h1F : reg_data_out <= slv_reg31;
|
||
|
default : reg_data_out <= 0;
|
||
|
endcase
|
||
|
end
|
||
|
|
||
|
// Output register or memory read data
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if ( S_AXI_ARESETN == 1'b0 )
|
||
|
begin
|
||
|
axi_rdata <= 0;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
// When there is a valid read address (S_AXI_ARVALID) with
|
||
|
// acceptance of read address by the slave (axi_arready),
|
||
|
// output the read dada
|
||
|
if (slv_reg_rden)
|
||
|
begin
|
||
|
axi_rdata <= reg_data_out; // register read data
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
// Add user logic here
|
||
|
(* mark_debug = "true" *) reg num_sample_changed;
|
||
|
(* mark_debug = "true" *) wire [31:0] num_sample_delayed ;
|
||
|
(* mark_debug = "true" *) wire reset = ~S_AXI_ARESETN | slv_reg0[C_S_AXI_DATA_WIDTH-1];
|
||
|
assign fifo_rst = reset ;
|
||
|
delayT #(.DATA_WIDTH(32), .DELAY(1)) num_sp_to_skip_delay_inst (
|
||
|
.clock(S_AXI_ACLK),
|
||
|
.reset(reset),
|
||
|
.data_in(slv_reg2),
|
||
|
.data_out(num_sample_delayed)
|
||
|
);
|
||
|
|
||
|
// write process for status registers to read header information
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if( reset ) begin
|
||
|
slv_reg16 <= 0;
|
||
|
slv_reg17 <= 0;
|
||
|
slv_reg18 <= 0;
|
||
|
slv_reg19 <= 0;
|
||
|
slv_reg20 <= 0;
|
||
|
end else begin
|
||
|
if (sig_valid) begin
|
||
|
slv_reg16 <= {29'b0, mcs_io} ;
|
||
|
slv_reg17 <= {20'b0, legacy_len} ;
|
||
|
end
|
||
|
if (ht_sig_valid) begin
|
||
|
slv_reg18 <= {25'b0, ht_mcs_io} ;
|
||
|
slv_reg19 <= {16'b0, ht_pkt_len_io} ;
|
||
|
end
|
||
|
if (fcs_valid)
|
||
|
slv_reg20 <= slv_reg20 + 1 ;
|
||
|
end
|
||
|
end
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if( S_AXI_ARESETN == 1'b0 )
|
||
|
num_sample_changed <= 1'b0 ;
|
||
|
else
|
||
|
begin
|
||
|
if( num_sample_delayed == slv_reg2)
|
||
|
num_sample_changed <= 1'b0 ;
|
||
|
else
|
||
|
num_sample_changed <= 1'b1 ;
|
||
|
|
||
|
end
|
||
|
end
|
||
|
(* mark_debug = "true" *) wire [31:0] phase_offset ;
|
||
|
(* mark_debug = "true" *) wire short_preamble_detected ;
|
||
|
(* mark_debug = "true" *) wire [3:0] state;
|
||
|
(* mark_debug = "true" *) wire [3:0] status_code;
|
||
|
(* mark_debug = "true" *) wire state_changed;
|
||
|
|
||
|
(* mark_debug = "true" *) wire [31:0] sync_long_metric;
|
||
|
(* mark_debug = "true" *) wire sync_long_metric_stb;
|
||
|
(* mark_debug = "true" *) wire long_preamble_detected;
|
||
|
(* mark_debug = "true" *) wire [31:0] sync_long_out;
|
||
|
(* mark_debug = "true" *) wire sync_long_out_strobe;
|
||
|
(* mark_debug = "true" *) wire [2:0] sync_long_state;
|
||
|
|
||
|
(* mark_debug = "true" *) wire pkt_begin;
|
||
|
(* mark_debug = "true" *) wire pkt_ht ;
|
||
|
(* mark_debug = "true" *) wire [7:0] pkt_rate ;
|
||
|
(* mark_debug = "true" *) wire [15:0] pkt_len ;
|
||
|
(* mark_debug = "true" *) wire [7:0] byte_out ;
|
||
|
(* mark_debug = "true" *) wire fcs_out_strobe;
|
||
|
(* mark_debug = "true" *) wire fcs_ok ;
|
||
|
(* mark_debug = "true" *) wire byte_out_strobe;
|
||
|
|
||
|
(* mark_debug = "true" *) reg [3:0] rd_en_counter ;
|
||
|
|
||
|
wire [3:0] legacy_rate;
|
||
|
wire [11:0] legacy_len;
|
||
|
wire legacy_sig_parity_ok;
|
||
|
wire legacy_sig_stb;
|
||
|
wire [2:0] mcs_sel = legacy_rate[2:0] ;
|
||
|
|
||
|
wire ht_sig_stb;
|
||
|
wire ht_sig_crc_ok;
|
||
|
|
||
|
// assign top level output to spy signal
|
||
|
assign ofdm_byte = byte_out ;
|
||
|
assign ofdm_byte_valid = byte_out_strobe ;
|
||
|
assign fcs_valid = fcs_ok & fcs_out_strobe ;
|
||
|
assign fcs_invalid = (~fcs_ok) & fcs_out_strobe;
|
||
|
assign pkt_len_io = legacy_len ;
|
||
|
assign sig_valid = legacy_sig_stb & legacy_sig_parity_ok;
|
||
|
assign sig_invalid = (~legacy_sig_parity_ok) & legacy_sig_stb;
|
||
|
|
||
|
always @ (mcs_sel)
|
||
|
case (mcs_sel)
|
||
|
3'b000: mcs_io = 6;
|
||
|
3'b001: mcs_io = 4;
|
||
|
3'b010: mcs_io = 2;
|
||
|
3'b011: mcs_io = 0;
|
||
|
3'b100: mcs_io = 7;
|
||
|
3'b101: mcs_io = 5;
|
||
|
3'b110: mcs_io = 3;
|
||
|
3'b111: mcs_io = 1;
|
||
|
default: mcs_io = 0;
|
||
|
endcase
|
||
|
|
||
|
assign ht_sig_valid = ht_sig_stb & ht_sig_crc_ok ;
|
||
|
assign ht_sig_invalid = ht_sig_stb & (~ht_sig_crc_ok) ;
|
||
|
|
||
|
always @ (state or status_code)
|
||
|
begin
|
||
|
|
||
|
if(state == 13) // ht sig error state
|
||
|
ht_unsupported = (status_code == E_UNSUPPORTED_MCS) || (status_code == E_UNSUPPORTED_CBW) || (status_code == E_UNSUPPORTED_STBC) || (status_code == E_UNSUPPORTED_FEC) || (status_code == E_UNSUPPORTED_SGI) || (status_code == E_UNSUPPORTED_SPATIAL);
|
||
|
else
|
||
|
ht_unsupported = 0;
|
||
|
|
||
|
end
|
||
|
|
||
|
//
|
||
|
|
||
|
always @( posedge S_AXI_ACLK )
|
||
|
begin
|
||
|
if( reset == 1'b1 )
|
||
|
begin
|
||
|
rd_en_counter <= 4'b0 ;
|
||
|
rd_en <= 1'b0 ;
|
||
|
end
|
||
|
else
|
||
|
begin
|
||
|
if( enable == 1'b1 )
|
||
|
begin
|
||
|
rd_en_counter = rd_en_counter + 1 ;
|
||
|
if(rd_en_counter == 4'd5)
|
||
|
begin
|
||
|
rd_en_counter = 4'b0 ;
|
||
|
if (~fifo_empty)
|
||
|
rd_en <= 1'b1;
|
||
|
else
|
||
|
rd_en <= 1'b0 ;
|
||
|
|
||
|
end
|
||
|
else
|
||
|
rd_en <= 1'b0 ;
|
||
|
end
|
||
|
|
||
|
end
|
||
|
end
|
||
|
|
||
|
|
||
|
dot11 dot11_inst (
|
||
|
.clock(S_AXI_ACLK),
|
||
|
.enable(enable),
|
||
|
.reset(reset),
|
||
|
|
||
|
.sample_in(sample_in),
|
||
|
.sample_in_strobe(sample_in_strobe),
|
||
|
|
||
|
.power_thres(slv_reg0[15:0]),
|
||
|
.window_size(slv_reg1[15:0]),
|
||
|
.num_sample_to_skip(slv_reg2),
|
||
|
.num_sample_changed(num_sample_changed),
|
||
|
.min_plateau(slv_reg3),
|
||
|
// OUTPUT: bytes and FCS status
|
||
|
.pkt_begin(pkt_begin),
|
||
|
.pkt_ht(pkt_ht),
|
||
|
.pkt_rate(pkt_rate),
|
||
|
.pkt_len(pkt_len),
|
||
|
.byte_out_strobe(byte_out_strobe),
|
||
|
.byte_out(byte_out),
|
||
|
.data_out(data_out),
|
||
|
.data_out_valid(data_out_valid),
|
||
|
.fcs_out_strobe(fcs_out_strobe),
|
||
|
.fcs_ok(fcs_ok),
|
||
|
|
||
|
// debug info
|
||
|
.state(state),
|
||
|
.status_code(status_code),
|
||
|
.state_changed(state_changed),
|
||
|
.power_trigger(trigger),
|
||
|
.short_preamble_detected(short_preamble_detected),
|
||
|
.phase_offset(phase_offset),
|
||
|
|
||
|
.sync_long_metric(sync_long_metric),
|
||
|
.sync_long_metric_stb(sync_long_metric_stb),
|
||
|
.long_preamble_detected(long_preamble_detected),
|
||
|
.sync_long_out(sync_long_out),
|
||
|
.sync_long_out_strobe(sync_long_out_strobe),
|
||
|
.sync_long_state(sync_long_state),
|
||
|
|
||
|
.legacy_rate(legacy_rate),
|
||
|
//.legacy_sig_rsvd(legacy_sig_rsvd),
|
||
|
.legacy_len(legacy_len),
|
||
|
//.legacy_sig_parity(legacy_sig_parity),
|
||
|
.legacy_sig_parity_ok(legacy_sig_parity_ok),
|
||
|
//.legacy_sig_tail(legacy_sig_tail),
|
||
|
.legacy_sig_stb(legacy_sig_stb),
|
||
|
//.sig_bits_spy(sig_bits_spy),
|
||
|
//.byte_count_spy(byte_count_spy),
|
||
|
|
||
|
.ht_sig_stb(ht_sig_stb),
|
||
|
.ht_mcs(ht_mcs_io),
|
||
|
.ht_len(ht_pkt_len_io),
|
||
|
.ht_sig_crc_ok(ht_sig_crc_ok)
|
||
|
|
||
|
|
||
|
);
|
||
|
// User logic ends
|
||
|
|
||
|
endmodule
|