`timescale 1 ns / 1 ps module dot11zynq_S00_AXI # ( // Users to add parameters here // User parameters ends // Do not modify the parameters beyond this line // Width of S_AXI data bus parameter integer C_S_AXI_DATA_WIDTH = 32, // Width of S_AXI address bus parameter integer C_S_AXI_ADDR_WIDTH = 7 ) ( // Users to add ports here input wire enable, input wire [31:0] sample_in, input wire sample_in_strobe, output wire trigger, output wire ofdm_byte_valid, output wire [7:0] ofdm_byte, output wire [63:0] data_out, // only has payload, doesn't have signal output wire data_out_valid, output wire fcs_valid, output wire fcs_invalid, output wire sig_valid, output wire sig_invalid, output reg [2:0] mcs_io, output wire [11:0] pkt_len_io, output wire [6:0] ht_mcs_io, output wire [15:0] ht_pkt_len_io, output wire ht_sig_invalid, output wire ht_sig_valid, output reg ht_unsupported, // ports to interract with fifo input wire fifo_empty, output reg rd_en, output wire fifo_rst, // User ports ends // Do not modify the ports beyond this line // Global Clock Signal input wire S_AXI_ACLK, // Global Reset Signal. This Signal is Active LOW input wire S_AXI_ARESETN, // Write address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR, // Write channel Protection type. This signal indicates the // privilege and security level of the transaction, and whether // the transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_AWPROT, // Write address valid. This signal indicates that the master signaling // valid write address and control information. input wire S_AXI_AWVALID, // Write address ready. This signal indicates that the slave is ready // to accept an address and associated control signals. output wire S_AXI_AWREADY, // Write data (issued by master, acceped by Slave) input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA, // Write strobes. This signal indicates which byte lanes hold // valid data. There is one write strobe bit for each eight // bits of the write data bus. input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB, // Write valid. This signal indicates that valid write // data and strobes are available. input wire S_AXI_WVALID, // Write ready. This signal indicates that the slave // can accept the write data. output wire S_AXI_WREADY, // Write response. This signal indicates the status // of the write transaction. output wire [1 : 0] S_AXI_BRESP, // Write response valid. This signal indicates that the channel // is signaling a valid write response. output wire S_AXI_BVALID, // Response ready. This signal indicates that the master // can accept a write response. input wire S_AXI_BREADY, // Read address (issued by master, acceped by Slave) input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR, // Protection type. This signal indicates the privilege // and security level of the transaction, and whether the // transaction is a data access or an instruction access. input wire [2 : 0] S_AXI_ARPROT, // Read address valid. This signal indicates that the channel // is signaling valid read address and control information. input wire S_AXI_ARVALID, // Read address ready. This signal indicates that the slave is // ready to accept an address and associated control signals. output wire S_AXI_ARREADY, // Read data (issued by slave) output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA, // Read response. This signal indicates the status of the // read transfer. output wire [1 : 0] S_AXI_RRESP, // Read valid. This signal indicates that the channel is // signaling the required read data. output wire S_AXI_RVALID, // Read ready. This signal indicates that the master can // accept the read data and response information. input wire S_AXI_RREADY ); // AXI4LITE signals reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr; reg axi_awready; reg axi_wready; reg [1 : 0] axi_bresp; reg axi_bvalid; reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr; reg axi_arready; reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata; reg [1 : 0] axi_rresp; reg axi_rvalid; // Example-specific design signals // local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH // ADDR_LSB is used for addressing 32/64 bit registers/memories // ADDR_LSB = 2 for 32 bits (n downto 2) // ADDR_LSB = 3 for 64 bits (n downto 3) localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1; localparam integer OPT_MEM_ADDR_BITS = 4; // openofdm local parameters for ht signal condition // erros in HT-SIGNAL localparam E_UNSUPPORTED_MCS = 1; localparam E_UNSUPPORTED_CBW = 2; localparam E_HT_WRONG_RSVD = 3; localparam E_UNSUPPORTED_STBC = 4; localparam E_UNSUPPORTED_FEC = 5; localparam E_UNSUPPORTED_SGI = 6; localparam E_UNSUPPORTED_SPATIAL = 7; localparam E_HT_WRONG_TAIL = 8; localparam E_WRONG_CRC = 9; //---------------------------------------------- //-- Signals for user logic register space example //------------------------------------------------ //-- Number of Slave Registers 32 reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg4; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg5; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg6; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg7; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg8; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg9; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg10; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg11; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg12; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg13; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg14; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg15; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg16; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg17; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg18; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg19; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg20; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg21; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg22; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg23; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg24; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg25; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg26; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg27; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg28; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg29; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg30; reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg31; wire slv_reg_rden; wire slv_reg_wren; reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out; integer byte_index; reg aw_en; // I/O Connections assignments assign S_AXI_AWREADY = axi_awready; assign S_AXI_WREADY = axi_wready; assign S_AXI_BRESP = axi_bresp; assign S_AXI_BVALID = axi_bvalid; assign S_AXI_ARREADY = axi_arready; assign S_AXI_RDATA = axi_rdata; assign S_AXI_RRESP = axi_rresp; assign S_AXI_RVALID = axi_rvalid; // Implement axi_awready generation // axi_awready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awready <= 1'b0; aw_en <= 1'b1; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) begin // slave is ready to accept write address when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_awready <= 1'b1; aw_en <= 1'b0; end else if (S_AXI_BREADY && axi_bvalid) begin aw_en <= 1'b1; axi_awready <= 1'b0; end else begin axi_awready <= 1'b0; end end end // Implement axi_awaddr latching // This process is used to latch the address when both // S_AXI_AWVALID and S_AXI_WVALID are valid. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_awaddr <= 0; end else begin if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en) begin // Write Address latching axi_awaddr <= S_AXI_AWADDR; end end end // Implement axi_wready generation // axi_wready is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is // de-asserted when reset is low. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_wready <= 1'b0; end else begin if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en ) begin // slave is ready to accept write data when // there is a valid write address and write data // on the write address and data bus. This design // expects no outstanding transactions. axi_wready <= 1'b1; end else begin axi_wready <= 1'b0; end end end // Implement memory mapped register select and write logic generation // The write data is accepted and written to memory mapped registers when // axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to // select byte enables of slave registers while writing. // These registers are cleared when reset (active low) is applied. // Slave register write enable is asserted when valid address and data are available // and the slave is ready to accept the write address and write data. assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID; always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin slv_reg0 <= 32'd100; // power_thresh register, 16 bit LSB used, MSB used as general reset slv_reg1 <= 32'd80; // power window register, 16 bit LSB used slv_reg2 <= 32'd5000000; // num sample to skip register, 32 bit used slv_reg3 <= 32'd100; // min plateau for short synq to be detected slv_reg4 <= 0; slv_reg5 <= 0; slv_reg6 <= 0; slv_reg7 <= 0; slv_reg8 <= 0; slv_reg9 <= 0; slv_reg10 <= 0; slv_reg11 <= 0; slv_reg12 <= 0; slv_reg13 <= 0; slv_reg14 <= 0; slv_reg15 <= 0; // slv_reg16 <= 0; // slv_reg17 <= 0; // slv_reg18 <= 0; // slv_reg19 <= 0; // slv_reg20 <= 0; slv_reg21 <= 0; slv_reg22 <= 0; slv_reg23 <= 0; slv_reg24 <= 0; slv_reg25 <= 0; slv_reg26 <= 0; slv_reg27 <= 0; slv_reg28 <= 0; slv_reg29 <= 0; slv_reg30 <= 0; slv_reg31 <= 0; end else begin if (slv_reg_wren) begin case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 5'h00: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 0 slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h01: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 1 slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h02: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 2 slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h03: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 3 slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h04: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 4 slv_reg4[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h05: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 5 slv_reg5[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h06: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 6 slv_reg6[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h07: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 7 slv_reg7[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h08: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 8 slv_reg8[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h09: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 9 slv_reg9[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0A: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 10 slv_reg10[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0B: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 11 slv_reg11[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0C: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 12 slv_reg12[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0D: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 13 slv_reg13[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0E: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 14 slv_reg14[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h0F: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 15 slv_reg15[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end // 5'h10: // for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) // if ( S_AXI_WSTRB[byte_index] == 1 ) begin // // Respective byte enables are asserted as per write strobes // // Slave register 16 // slv_reg16[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; // end // 5'h11: // for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) // if ( S_AXI_WSTRB[byte_index] == 1 ) begin // // Respective byte enables are asserted as per write strobes // // Slave register 17 // slv_reg17[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; // end // 5'h12: // for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) // if ( S_AXI_WSTRB[byte_index] == 1 ) begin // // Respective byte enables are asserted as per write strobes // // Slave register 18 // slv_reg18[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; // end // 5'h13: // for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) // if ( S_AXI_WSTRB[byte_index] == 1 ) begin // // Respective byte enables are asserted as per write strobes // // Slave register 19 // slv_reg19[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; // end // 5'h14: // for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) // if ( S_AXI_WSTRB[byte_index] == 1 ) begin // // Respective byte enables are asserted as per write strobes // // Slave register 20 // slv_reg20[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; // end 5'h15: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 21 slv_reg21[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h16: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 22 slv_reg22[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h17: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 23 slv_reg23[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h18: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 24 slv_reg24[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h19: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 25 slv_reg25[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1A: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 26 slv_reg26[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1B: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 27 slv_reg27[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1C: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 28 slv_reg28[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1D: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 29 slv_reg29[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1E: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 30 slv_reg30[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end 5'h1F: for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 ) if ( S_AXI_WSTRB[byte_index] == 1 ) begin // Respective byte enables are asserted as per write strobes // Slave register 31 slv_reg31[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8]; end default : begin slv_reg0 <= slv_reg0; slv_reg1 <= slv_reg1; slv_reg2 <= slv_reg2; slv_reg3 <= slv_reg3; slv_reg4 <= slv_reg4; slv_reg5 <= slv_reg5; slv_reg6 <= slv_reg6; slv_reg7 <= slv_reg7; slv_reg8 <= slv_reg8; slv_reg9 <= slv_reg9; slv_reg10 <= slv_reg10; slv_reg11 <= slv_reg11; slv_reg12 <= slv_reg12; slv_reg13 <= slv_reg13; slv_reg14 <= slv_reg14; slv_reg15 <= slv_reg15; // slv_reg16 <= slv_reg16; // slv_reg17 <= slv_reg17; // slv_reg18 <= slv_reg18; // slv_reg19 <= slv_reg19; // slv_reg20 <= slv_reg20; slv_reg21 <= slv_reg21; slv_reg22 <= slv_reg22; slv_reg23 <= slv_reg23; slv_reg24 <= slv_reg24; slv_reg25 <= slv_reg25; slv_reg26 <= slv_reg26; slv_reg27 <= slv_reg27; slv_reg28 <= slv_reg28; slv_reg29 <= slv_reg29; slv_reg30 <= slv_reg30; slv_reg31 <= slv_reg31; end endcase end end end // Implement write response logic generation // The write response and response valid signals are asserted by the slave // when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. // This marks the acceptance of address and indicates the status of // write transaction. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_bvalid <= 0; axi_bresp <= 2'b0; end else begin if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID) begin // indicates a valid write response is available axi_bvalid <= 1'b1; axi_bresp <= 2'b0; // 'OKAY' response end // work error responses in future else begin if (S_AXI_BREADY && axi_bvalid) //check if bready is asserted while bvalid is high) //(there is a possibility that bready is always asserted high) begin axi_bvalid <= 1'b0; end end end end // Implement axi_arready generation // axi_arready is asserted for one S_AXI_ACLK clock cycle when // S_AXI_ARVALID is asserted. axi_awready is // de-asserted when reset (active low) is asserted. // The read address is also latched when S_AXI_ARVALID is // asserted. axi_araddr is reset to zero on reset assertion. always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_arready <= 1'b0; axi_araddr <= 32'b0; end else begin if (~axi_arready && S_AXI_ARVALID) begin // indicates that the slave has acceped the valid read address axi_arready <= 1'b1; // Read address latching axi_araddr <= S_AXI_ARADDR; end else begin axi_arready <= 1'b0; end end end // Implement axi_arvalid generation // axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both // S_AXI_ARVALID and axi_arready are asserted. The slave registers // data are available on the axi_rdata bus at this instance. The // assertion of axi_rvalid marks the validity of read data on the // bus and axi_rresp indicates the status of read transaction.axi_rvalid // is deasserted on reset (active low). axi_rresp and axi_rdata are // cleared to zero on reset (active low). always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rvalid <= 0; axi_rresp <= 0; end else begin if (axi_arready && S_AXI_ARVALID && ~axi_rvalid) begin // Valid read data is available at the read data bus axi_rvalid <= 1'b1; axi_rresp <= 2'b0; // 'OKAY' response end else if (axi_rvalid && S_AXI_RREADY) begin // Read data is accepted by the master axi_rvalid <= 1'b0; end end end // Implement memory mapped register select and read logic generation // Slave register read enable is asserted when valid address is available // and the slave is ready to accept the read address. assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid; always @(*) begin // Address decoding for reading registers case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] ) 5'h00 : reg_data_out <= slv_reg0; 5'h01 : reg_data_out <= slv_reg1; 5'h02 : reg_data_out <= slv_reg2; 5'h03 : reg_data_out <= slv_reg3; 5'h04 : reg_data_out <= slv_reg4; 5'h05 : reg_data_out <= slv_reg5; 5'h06 : reg_data_out <= slv_reg6; 5'h07 : reg_data_out <= slv_reg7; 5'h08 : reg_data_out <= slv_reg8; 5'h09 : reg_data_out <= slv_reg9; 5'h0A : reg_data_out <= slv_reg10; 5'h0B : reg_data_out <= slv_reg11; 5'h0C : reg_data_out <= slv_reg12; 5'h0D : reg_data_out <= slv_reg13; 5'h0E : reg_data_out <= slv_reg14; 5'h0F : reg_data_out <= slv_reg15; 5'h10 : reg_data_out <= slv_reg16; 5'h11 : reg_data_out <= slv_reg17; 5'h12 : reg_data_out <= slv_reg18; 5'h13 : reg_data_out <= slv_reg19; 5'h14 : reg_data_out <= slv_reg20; 5'h15 : reg_data_out <= slv_reg21; 5'h16 : reg_data_out <= slv_reg22; 5'h17 : reg_data_out <= slv_reg23; 5'h18 : reg_data_out <= slv_reg24; 5'h19 : reg_data_out <= slv_reg25; 5'h1A : reg_data_out <= slv_reg26; 5'h1B : reg_data_out <= slv_reg27; 5'h1C : reg_data_out <= slv_reg28; 5'h1D : reg_data_out <= slv_reg29; 5'h1E : reg_data_out <= slv_reg30; 5'h1F : reg_data_out <= slv_reg31; default : reg_data_out <= 0; endcase end // Output register or memory read data always @( posedge S_AXI_ACLK ) begin if ( S_AXI_ARESETN == 1'b0 ) begin axi_rdata <= 0; end else begin // When there is a valid read address (S_AXI_ARVALID) with // acceptance of read address by the slave (axi_arready), // output the read dada if (slv_reg_rden) begin axi_rdata <= reg_data_out; // register read data end end end // Add user logic here (* mark_debug = "true" *) reg num_sample_changed; (* mark_debug = "true" *) wire [31:0] num_sample_delayed ; (* mark_debug = "true" *) wire reset = ~S_AXI_ARESETN | slv_reg0[C_S_AXI_DATA_WIDTH-1]; assign fifo_rst = reset ; delayT #(.DATA_WIDTH(32), .DELAY(1)) num_sp_to_skip_delay_inst ( .clock(S_AXI_ACLK), .reset(reset), .data_in(slv_reg2), .data_out(num_sample_delayed) ); // write process for status registers to read header information always @( posedge S_AXI_ACLK ) begin if( reset ) begin slv_reg16 <= 0; slv_reg17 <= 0; slv_reg18 <= 0; slv_reg19 <= 0; slv_reg20 <= 0; end else begin if (sig_valid) begin slv_reg16 <= {29'b0, mcs_io} ; slv_reg17 <= {20'b0, legacy_len} ; end if (ht_sig_valid) begin slv_reg18 <= {25'b0, ht_mcs_io} ; slv_reg19 <= {16'b0, ht_pkt_len_io} ; end if (fcs_valid) slv_reg20 <= slv_reg20 + 1 ; end end always @( posedge S_AXI_ACLK ) begin if( S_AXI_ARESETN == 1'b0 ) num_sample_changed <= 1'b0 ; else begin if( num_sample_delayed == slv_reg2) num_sample_changed <= 1'b0 ; else num_sample_changed <= 1'b1 ; end end (* mark_debug = "true" *) wire [31:0] phase_offset ; (* mark_debug = "true" *) wire short_preamble_detected ; (* mark_debug = "true" *) wire [3:0] state; (* mark_debug = "true" *) wire [3:0] status_code; (* mark_debug = "true" *) wire state_changed; (* mark_debug = "true" *) wire [31:0] sync_long_metric; (* mark_debug = "true" *) wire sync_long_metric_stb; (* mark_debug = "true" *) wire long_preamble_detected; (* mark_debug = "true" *) wire [31:0] sync_long_out; (* mark_debug = "true" *) wire sync_long_out_strobe; (* mark_debug = "true" *) wire [2:0] sync_long_state; (* mark_debug = "true" *) wire pkt_begin; (* mark_debug = "true" *) wire pkt_ht ; (* mark_debug = "true" *) wire [7:0] pkt_rate ; (* mark_debug = "true" *) wire [15:0] pkt_len ; (* mark_debug = "true" *) wire [7:0] byte_out ; (* mark_debug = "true" *) wire fcs_out_strobe; (* mark_debug = "true" *) wire fcs_ok ; (* mark_debug = "true" *) wire byte_out_strobe; (* mark_debug = "true" *) reg [3:0] rd_en_counter ; wire [3:0] legacy_rate; wire [11:0] legacy_len; wire legacy_sig_parity_ok; wire legacy_sig_stb; wire [2:0] mcs_sel = legacy_rate[2:0] ; wire ht_sig_stb; wire ht_sig_crc_ok; // assign top level output to spy signal assign ofdm_byte = byte_out ; assign ofdm_byte_valid = byte_out_strobe ; assign fcs_valid = fcs_ok & fcs_out_strobe ; assign fcs_invalid = (~fcs_ok) & fcs_out_strobe; assign pkt_len_io = legacy_len ; assign sig_valid = legacy_sig_stb & legacy_sig_parity_ok; assign sig_invalid = (~legacy_sig_parity_ok) & legacy_sig_stb; always @ (mcs_sel) case (mcs_sel) 3'b000: mcs_io = 6; 3'b001: mcs_io = 4; 3'b010: mcs_io = 2; 3'b011: mcs_io = 0; 3'b100: mcs_io = 7; 3'b101: mcs_io = 5; 3'b110: mcs_io = 3; 3'b111: mcs_io = 1; default: mcs_io = 0; endcase assign ht_sig_valid = ht_sig_stb & ht_sig_crc_ok ; assign ht_sig_invalid = ht_sig_stb & (~ht_sig_crc_ok) ; always @ (state or status_code) begin if(state == 13) // ht sig error state ht_unsupported = (status_code == E_UNSUPPORTED_MCS) || (status_code == E_UNSUPPORTED_CBW) || (status_code == E_UNSUPPORTED_STBC) || (status_code == E_UNSUPPORTED_FEC) || (status_code == E_UNSUPPORTED_SGI) || (status_code == E_UNSUPPORTED_SPATIAL); else ht_unsupported = 0; end // always @( posedge S_AXI_ACLK ) begin if( reset == 1'b1 ) begin rd_en_counter <= 4'b0 ; rd_en <= 1'b0 ; end else begin if( enable == 1'b1 ) begin rd_en_counter = rd_en_counter + 1 ; if(rd_en_counter == 4'd5) begin rd_en_counter = 4'b0 ; if (~fifo_empty) rd_en <= 1'b1; else rd_en <= 1'b0 ; end else rd_en <= 1'b0 ; end end end dot11 dot11_inst ( .clock(S_AXI_ACLK), .enable(enable), .reset(reset), .sample_in(sample_in), .sample_in_strobe(sample_in_strobe), .power_thres(slv_reg0[15:0]), .window_size(slv_reg1[15:0]), .num_sample_to_skip(slv_reg2), .num_sample_changed(num_sample_changed), .min_plateau(slv_reg3), // OUTPUT: bytes and FCS status .pkt_begin(pkt_begin), .pkt_ht(pkt_ht), .pkt_rate(pkt_rate), .pkt_len(pkt_len), .byte_out_strobe(byte_out_strobe), .byte_out(byte_out), .data_out(data_out), .data_out_valid(data_out_valid), .fcs_out_strobe(fcs_out_strobe), .fcs_ok(fcs_ok), // debug info .state(state), .status_code(status_code), .state_changed(state_changed), .power_trigger(trigger), .short_preamble_detected(short_preamble_detected), .phase_offset(phase_offset), .sync_long_metric(sync_long_metric), .sync_long_metric_stb(sync_long_metric_stb), .long_preamble_detected(long_preamble_detected), .sync_long_out(sync_long_out), .sync_long_out_strobe(sync_long_out_strobe), .sync_long_state(sync_long_state), .legacy_rate(legacy_rate), //.legacy_sig_rsvd(legacy_sig_rsvd), .legacy_len(legacy_len), //.legacy_sig_parity(legacy_sig_parity), .legacy_sig_parity_ok(legacy_sig_parity_ok), //.legacy_sig_tail(legacy_sig_tail), .legacy_sig_stb(legacy_sig_stb), //.sig_bits_spy(sig_bits_spy), //.byte_count_spy(byte_count_spy), .ht_sig_stb(ht_sig_stb), .ht_mcs(ht_mcs_io), .ht_len(ht_pkt_len_io), .ht_sig_crc_ok(ht_sig_crc_ok) ); // User logic ends endmodule