mirror of
https://github.com/ParisNeo/lollms-webui.git
synced 2025-01-14 08:49:53 +00:00
d725855652
Fixed path in install upgraded backends
82 lines
2.9 KiB
Python
82 lines
2.9 KiB
Python
######
|
|
# Project : GPT4ALL-UI
|
|
# File : backend.py
|
|
# Author : ParisNeo with the help of the community
|
|
# Supported by Nomic-AI
|
|
# Licence : Apache 2.0
|
|
# Description :
|
|
# This is an interface class for GPT4All-ui backends.
|
|
######
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
from pyGpt4All.backend import GPTBackend
|
|
import torch
|
|
import time
|
|
__author__ = "parisneo"
|
|
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
|
|
__copyright__ = "Copyright 2023, "
|
|
__license__ = "Apache 2.0"
|
|
|
|
backend_name = "HuggingFace"
|
|
|
|
|
|
class HuggingFace(GPTBackend):
|
|
file_extension='*'
|
|
def __init__(self, config:dict) -> None:
|
|
"""Builds a Hugging face backend
|
|
|
|
Args:
|
|
config (dict): The configuration file
|
|
"""
|
|
super().__init__(config, True)
|
|
self.config = config
|
|
path = self.config['model']
|
|
|
|
self.model = AutoModelForCausalLM.from_pretrained(Path("models/hugging_face")/path, low_cpu_mem_usage=True)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(Path("models/hugging_face")/path)
|
|
|
|
self.generator = pipeline(
|
|
"text-generation",
|
|
model=self.model,
|
|
tokenizer=self.tokenizer,
|
|
device=0, # Use GPU if available
|
|
)
|
|
|
|
|
|
def generate_callback(self, text, new_text_callback):
|
|
def callback(outputs):
|
|
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
new_text_callback(generated_text)
|
|
print(text + generated_text, end="\r")
|
|
time.sleep(0.5)
|
|
return callback
|
|
|
|
def generate(self,
|
|
prompt:str,
|
|
n_predict: int = 128,
|
|
new_text_callback: Callable[[str], None] = bool,
|
|
verbose: bool = False,
|
|
**gpt_params ):
|
|
"""Generates text out of a prompt
|
|
|
|
Args:
|
|
prompt (str): The prompt to use for generation
|
|
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
|
|
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
|
|
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
|
|
"""
|
|
callback = self.generate_callback(prompt, new_text_callback)
|
|
outputs = self.generator(
|
|
prompt,
|
|
max_length=100,
|
|
do_sample=True,
|
|
num_beams=5,
|
|
temperature=self.config['temp'],
|
|
top_k=self.config['top_k'],
|
|
top_p=self.config['top_p'],
|
|
repetition_penalty=self.config['repeat_penalty'],
|
|
repeat_last_n = self.config['repeat_last_n'],
|
|
callback=callback
|
|
)
|
|
print(outputs) |