###### # Project : GPT4ALL-UI # File : backend.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # Licence : Apache 2.0 # Description : # This is an interface class for GPT4All-ui backends. ###### from pathlib import Path from typing import Callable from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline from pyGpt4All.backend import GPTBackend import torch import time __author__ = "parisneo" __github__ = "https://github.com/nomic-ai/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" backend_name = "HuggingFace" class HuggingFace(GPTBackend): file_extension='*' def __init__(self, config:dict) -> None: """Builds a Hugging face backend Args: config (dict): The configuration file """ super().__init__(config, True) self.config = config path = self.config['model'] self.model = AutoModelForCausalLM.from_pretrained(Path("models/hugging_face")/path, low_cpu_mem_usage=True) self.tokenizer = AutoTokenizer.from_pretrained(Path("models/hugging_face")/path) self.generator = pipeline( "text-generation", model=self.model, tokenizer=self.tokenizer, device=0, # Use GPU if available ) def generate_callback(self, text, new_text_callback): def callback(outputs): generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True) new_text_callback(generated_text) print(text + generated_text, end="\r") time.sleep(0.5) return callback def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ callback = self.generate_callback(prompt, new_text_callback) outputs = self.generator( prompt, max_length=100, do_sample=True, num_beams=5, temperature=self.config['temp'], top_k=self.config['top_k'], top_p=self.config['top_p'], repetition_penalty=self.config['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], callback=callback ) print(outputs)