lollms-webui/bindings/c_transformers/__init__.py
2023-05-31 15:00:09 +02:00

143 lines
5.1 KiB
Python

######
# Project : GPT4ALL-UI
# File : binding.py
# Author : ParisNeo with the help of the community
# Underlying binding : Abdeladim's pygptj binding
# Supported by Nomic-AI
# license : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui bindings.
# This binding is a wrapper to marella's binding
######
from pathlib import Path
from typing import Callable
from api.binding import LLMBinding
import yaml
from ctransformers import AutoModelForCausalLM
__author__ = "parisneo"
__github__ = "https://github.com/ParisNeo/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
binding_name = "CTRansformers"
class CTRansformers(LLMBinding):
file_extension='*.bin'
def __init__(self, config:dict) -> None:
"""Builds a LLAMACPP binding
Args:
config (dict): The configuration file
"""
super().__init__(config, False)
if 'gpt2' in self.config['model']:
model_type='gpt2'
elif 'gptj' in self.config['model']:
model_type='gptj'
elif 'gpt_neox' in self.config['model']:
model_type='gpt_neox'
elif 'dolly-v2' in self.config['model']:
model_type='dolly-v2'
elif 'starcoder' in self.config['model']:
model_type='starcoder'
elif 'llama' in self.config['model'].lower() or 'wizardlm' in self.config['model'].lower() or 'vigogne' in self.config['model'].lower():
model_type='llama'
elif 'mpt' in self.config['model']:
model_type='mpt'
else:
print("The model you are using is not supported by this binding")
return
if self.config["use_avx2"]:
self.model = AutoModelForCausalLM.from_pretrained(
f"./models/c_transformers/{self.config['model']}", model_type=model_type
)
else:
self.model = AutoModelForCausalLM.from_pretrained(
f"./models/c_transformers/{self.config['model']}", model_type=model_type, lib = "avx"
)
def tokenize(self, prompt):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
return self.model.tokenize(prompt.encode())
def detokenize(self, tokens_list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
return self.model.detokenize(tokens_list)
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
output = ""
#self.model.reset()
tokens = self.model.tokenize(prompt)
count = 0
for tok in self.model.generate(
tokens,
top_k=gpt_params['top_k'],
top_p=gpt_params['top_p'],
temperature=gpt_params['temperature'],
repetition_penalty=gpt_params['repeat_penalty'],
seed=self.config['seed'],
batch_size=1,
threads = self.config['n_threads'],
reset=True,
):
if count >= n_predict or self.model.is_eos_token(tok):
break
word = self.model.detokenize(tok)
if new_text_callback is not None:
if not new_text_callback(word):
break
output += word
count += 1
except Exception as ex:
print(ex)
return output
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
binding_path = Path(__file__).parent
file_path = binding_path/"models.yaml"
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
return yaml_data