###### # Project : GPT4ALL-UI # File : binding.py # Author : ParisNeo with the help of the community # Underlying binding : Abdeladim's pygptj binding # Supported by Nomic-AI # license : Apache 2.0 # Description : # This is an interface class for GPT4All-ui bindings. # This binding is a wrapper to marella's binding ###### from pathlib import Path from typing import Callable from api.binding import LLMBinding import yaml from ctransformers import AutoModelForCausalLM __author__ = "parisneo" __github__ = "https://github.com/ParisNeo/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" binding_name = "CTRansformers" class CTRansformers(LLMBinding): file_extension='*.bin' def __init__(self, config:dict) -> None: """Builds a LLAMACPP binding Args: config (dict): The configuration file """ super().__init__(config, False) if 'gpt2' in self.config['model']: model_type='gpt2' elif 'gptj' in self.config['model']: model_type='gptj' elif 'gpt_neox' in self.config['model']: model_type='gpt_neox' elif 'dolly-v2' in self.config['model']: model_type='dolly-v2' elif 'starcoder' in self.config['model']: model_type='starcoder' elif 'llama' in self.config['model'].lower() or 'wizardlm' in self.config['model'].lower() or 'vigogne' in self.config['model'].lower(): model_type='llama' elif 'mpt' in self.config['model']: model_type='mpt' else: print("The model you are using is not supported by this binding") return if self.config["use_avx2"]: self.model = AutoModelForCausalLM.from_pretrained( f"./models/c_transformers/{self.config['model']}", model_type=model_type ) else: self.model = AutoModelForCausalLM.from_pretrained( f"./models/c_transformers/{self.config['model']}", model_type=model_type, lib = "avx" ) def tokenize(self, prompt): """ Tokenizes the given prompt using the model's tokenizer. Args: prompt (str): The input prompt to be tokenized. Returns: list: A list of tokens representing the tokenized prompt. """ return self.model.tokenize(prompt.encode()) def detokenize(self, tokens_list): """ Detokenizes the given list of tokens using the model's tokenizer. Args: tokens_list (list): A list of tokens to be detokenized. Returns: str: The detokenized text as a string. """ return self.model.detokenize(tokens_list) def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ try: output = "" #self.model.reset() tokens = self.model.tokenize(prompt) count = 0 for tok in self.model.generate( tokens, top_k=gpt_params['top_k'], top_p=gpt_params['top_p'], temperature=gpt_params['temperature'], repetition_penalty=gpt_params['repeat_penalty'], seed=self.config['seed'], batch_size=1, threads = self.config['n_threads'], reset=True, ): if count >= n_predict or self.model.is_eos_token(tok): break word = self.model.detokenize(tok) if new_text_callback is not None: if not new_text_callback(word): break output += word count += 1 except Exception as ex: print(ex) return output @staticmethod def get_available_models(): # Create the file path relative to the child class's directory binding_path = Path(__file__).parent file_path = binding_path/"models.yaml" with open(file_path, 'r') as file: yaml_data = yaml.safe_load(file) return yaml_data