lollms-webui/bindings/gpt_4all/__init__.py
2023-05-30 01:07:46 +02:00

120 lines
4.1 KiB
Python

######
# Project : GPT4ALL-UI
# File : binding.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# license : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui bindings.
# This binding is a wrapper to gpt4all's official binding
# Follow him on his github project : https://github.com/ParisNeo/gpt4all
######
from pathlib import Path
from typing import Callable
from gpt4all import GPT4All
from api.binding import LLMBinding
import yaml
__author__ = "parisneo"
__github__ = "https://github.com/ParisNeo/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
binding_name = "GPT4ALL"
from gpt4all import GPT4All
class GPT4ALL(LLMBinding):
file_extension='*.bin'
def __init__(self, config:dict) -> None:
"""Builds a GPT4ALL binding
Args:
config (dict): The configuration file
"""
super().__init__(config, False)
self.model = GPT4All.get_model_from_name(self.config['model'])
self.model.load_model(
model_path=f"./models/gpt_4all/{self.config['model']}"
)
def tokenize(self, prompt):
"""
Tokenizes the given prompt using the model's tokenizer.
Args:
prompt (str): The input prompt to be tokenized.
Returns:
list: A list of tokens representing the tokenized prompt.
"""
return None
def detokenize(self, tokens_list):
"""
Detokenizes the given list of tokens using the model's tokenizer.
Args:
tokens_list (list): A list of tokens to be detokenized.
Returns:
str: The detokenized text as a string.
"""
return None
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
try:
response_text = []
def local_callback(token_id, response):
decoded_word = response.decode('utf-8')
response_text.append( decoded_word )
if new_text_callback is not None:
if not new_text_callback(decoded_word):
return False
# Do whatever you want with decoded_token here.
return True
self.model._response_callback = local_callback
self.model.generate(prompt,
n_predict=n_predict,
temp=gpt_params["temperature"],
top_k=gpt_params['top_k'],
top_p=gpt_params['top_p'],
repeat_penalty=gpt_params['repeat_penalty'],
repeat_last_n = self.config['repeat_last_n'],
# n_threads=self.config['n_threads'],
streaming=False,
)
except Exception as ex:
print(ex)
return ''.join(response_text)
@staticmethod
def get_available_models():
# Create the file path relative to the child class's directory
binding_path = Path(__file__).parent
file_path = binding_path/"models.yaml"
with open(file_path, 'r') as file:
yaml_data = yaml.safe_load(file)
return yaml_data