###### # Project : GPT4ALL-UI # File : binding.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # license : Apache 2.0 # Description : # This is an interface class for GPT4All-ui bindings. # This binding is a wrapper to gpt4all's official binding # Follow him on his github project : https://github.com/ParisNeo/gpt4all ###### from pathlib import Path from typing import Callable from gpt4all import GPT4All from api.binding import LLMBinding import yaml __author__ = "parisneo" __github__ = "https://github.com/ParisNeo/gpt4all-ui" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" binding_name = "GPT4ALL" from gpt4all import GPT4All class GPT4ALL(LLMBinding): file_extension='*.bin' def __init__(self, config:dict) -> None: """Builds a GPT4ALL binding Args: config (dict): The configuration file """ super().__init__(config, False) self.model = GPT4All.get_model_from_name(self.config['model']) self.model.load_model( model_path=f"./models/gpt_4all/{self.config['model']}" ) def tokenize(self, prompt): """ Tokenizes the given prompt using the model's tokenizer. Args: prompt (str): The input prompt to be tokenized. Returns: list: A list of tokens representing the tokenized prompt. """ return None def detokenize(self, tokens_list): """ Detokenizes the given list of tokens using the model's tokenizer. Args: tokens_list (list): A list of tokens to be detokenized. Returns: str: The detokenized text as a string. """ return None def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ try: response_text = [] def local_callback(token_id, response): decoded_word = response.decode('utf-8') response_text.append( decoded_word ) if new_text_callback is not None: if not new_text_callback(decoded_word): return False # Do whatever you want with decoded_token here. return True self.model._response_callback = local_callback self.model.generate(prompt, n_predict=n_predict, temp=gpt_params["temperature"], top_k=gpt_params['top_k'], top_p=gpt_params['top_p'], repeat_penalty=gpt_params['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], # n_threads=self.config['n_threads'], streaming=False, ) except Exception as ex: print(ex) return ''.join(response_text) @staticmethod def get_available_models(): # Create the file path relative to the child class's directory binding_path = Path(__file__).parent file_path = binding_path/"models.yaml" with open(file_path, 'r') as file: yaml_data = yaml.safe_load(file) return yaml_data