mirror of
https://github.com/ParisNeo/lollms-webui.git
synced 2025-01-11 15:32:41 +00:00
77 lines
2.6 KiB
Python
77 lines
2.6 KiB
Python
######
|
|
# Project : GPT4ALL-UI
|
|
# File : backend.py
|
|
# Author : ParisNeo with the help of the community
|
|
# Supported by Nomic-AI
|
|
# Licence : Apache 2.0
|
|
# Description :
|
|
# This is an interface class for GPT4All-ui backends.
|
|
######
|
|
from pathlib import Path
|
|
from typing import Callable
|
|
from gpt4allj import Model
|
|
from pyGpt4All.backend import GPTBackend
|
|
|
|
__author__ = "parisneo"
|
|
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
|
|
__copyright__ = "Copyright 2023, "
|
|
__license__ = "Apache 2.0"
|
|
|
|
backend_name = "GPT_J"
|
|
|
|
|
|
class GPT_J(GPTBackend):
|
|
file_extension='*.bin'
|
|
def __init__(self, config:dict) -> None:
|
|
"""Builds a GPT-J backend
|
|
|
|
Args:
|
|
config (dict): The configuration file
|
|
"""
|
|
super().__init__(config, True)
|
|
self.config = config
|
|
if "use_avx2" in self.config and not self.config["use_avx2"]:
|
|
self.model = Model(
|
|
model=f"./models/gpt_j/{self.config['model']}", instructions='avx'
|
|
)
|
|
else:
|
|
self.model = Model(
|
|
model=f"./models/gpt_j/{self.config['model']}"
|
|
)
|
|
|
|
|
|
|
|
def get_num_tokens(self, prompt):
|
|
return self.model.num_tokens(prompt)
|
|
|
|
def generate(self,
|
|
prompt:str,
|
|
n_predict: int = 128,
|
|
new_text_callback: Callable[[str], None] = bool,
|
|
verbose: bool = False,
|
|
**gpt_params ):
|
|
"""Generates text out of a prompt
|
|
|
|
Args:
|
|
prompt (str): The prompt to use for generation
|
|
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
|
|
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
|
|
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
|
|
"""
|
|
num_tokens = self.get_num_tokens(prompt)
|
|
print(f"Prompt has {num_tokens} tokens")
|
|
self.model.generate(
|
|
prompt,
|
|
callback=new_text_callback,
|
|
n_predict=num_tokens + n_predict,
|
|
seed=self.config['seed'] if self.config['seed']>0 else -1,
|
|
temp=self.config['temp'],
|
|
top_k=self.config['top_k'],
|
|
top_p=self.config['top_p'],
|
|
# repeat_penalty=self.config['repeat_penalty'],
|
|
# repeat_last_n = self.config['repeat_last_n'],
|
|
n_threads=self.config['n_threads'],
|
|
#verbose=verbose
|
|
)
|
|
#new_text_callback()
|