lollms-webui/backends/gpt_j/__init__.py

77 lines
2.6 KiB
Python
Raw Normal View History

2023-04-20 17:30:03 +00:00
######
# Project : GPT4ALL-UI
# File : backend.py
# Author : ParisNeo with the help of the community
# Supported by Nomic-AI
# Licence : Apache 2.0
# Description :
# This is an interface class for GPT4All-ui backends.
######
from pathlib import Path
from typing import Callable
from gpt4allj import Model
from pyGpt4All.backend import GPTBackend
2023-04-20 17:30:03 +00:00
__author__ = "parisneo"
__github__ = "https://github.com/nomic-ai/gpt4all-ui"
__copyright__ = "Copyright 2023, "
__license__ = "Apache 2.0"
2023-04-23 18:28:24 +00:00
backend_name = "GPT_J"
2023-04-20 17:30:03 +00:00
class GPT_J(GPTBackend):
2023-04-23 14:59:00 +00:00
file_extension='*.bin'
2023-04-20 17:30:03 +00:00
def __init__(self, config:dict) -> None:
"""Builds a GPT-J backend
Args:
config (dict): The configuration file
"""
2023-04-23 22:19:15 +00:00
super().__init__(config, True)
2023-04-20 17:30:03 +00:00
self.config = config
2023-04-23 22:19:15 +00:00
if "use_avx2" in self.config and not self.config["use_avx2"]:
self.model = Model(
model=f"./models/gpt_j/{self.config['model']}", instructions='avx'
)
else:
self.model = Model(
model=f"./models/gpt_j/{self.config['model']}"
)
def get_num_tokens(self, prompt):
return self.model.num_tokens(prompt)
2023-04-20 17:30:03 +00:00
def generate(self,
prompt:str,
n_predict: int = 128,
new_text_callback: Callable[[str], None] = bool,
verbose: bool = False,
**gpt_params ):
"""Generates text out of a prompt
Args:
prompt (str): The prompt to use for generation
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
"""
2023-04-23 22:19:15 +00:00
num_tokens = self.get_num_tokens(prompt)
print(f"Prompt has {num_tokens} tokens")
2023-04-20 17:30:03 +00:00
self.model.generate(
prompt,
2023-04-23 22:19:15 +00:00
callback=new_text_callback,
n_predict=num_tokens + n_predict,
seed=self.config['seed'] if self.config['seed']>0 else -1,
2023-04-20 17:30:03 +00:00
temp=self.config['temp'],
top_k=self.config['top_k'],
top_p=self.config['top_p'],
2023-04-23 22:19:15 +00:00
# repeat_penalty=self.config['repeat_penalty'],
# repeat_last_n = self.config['repeat_last_n'],
2023-04-20 17:30:03 +00:00
n_threads=self.config['n_threads'],
2023-04-23 22:19:15 +00:00
#verbose=verbose
2023-04-20 17:30:03 +00:00
)
2023-04-23 22:19:15 +00:00
#new_text_callback()