2023-05-14 10:12:51 +02:00
|
|
|
######
|
|
|
|
# Project : GPT4ALL-UI
|
|
|
|
# File : backend.py
|
|
|
|
# Author : ParisNeo with the help of the community
|
|
|
|
# Supported by Nomic-AI
|
2023-05-21 22:46:02 +02:00
|
|
|
# license : Apache 2.0
|
2023-05-14 10:12:51 +02:00
|
|
|
# Description :
|
|
|
|
# This is an interface class for GPT4All-ui backends.
|
|
|
|
######
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable
|
|
|
|
from transformers import AutoTokenizer, TextGenerationPipeline
|
|
|
|
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
|
2023-05-25 11:34:56 +02:00
|
|
|
from api.backend import LLMBackend
|
2023-05-14 10:12:51 +02:00
|
|
|
import torch
|
|
|
|
import yaml
|
|
|
|
|
|
|
|
__author__ = "parisneo"
|
|
|
|
__github__ = "https://github.com/ParisNeo/GPTQ_backend"
|
|
|
|
__copyright__ = "Copyright 2023, "
|
|
|
|
__license__ = "Apache 2.0"
|
|
|
|
|
|
|
|
backend_name = "GPTQ"
|
|
|
|
|
2023-05-25 11:34:56 +02:00
|
|
|
class GPTQ(LLMBackend):
|
2023-05-14 10:12:51 +02:00
|
|
|
file_extension='*'
|
|
|
|
def __init__(self, config:dict) -> None:
|
|
|
|
"""Builds a GPTQ backend
|
|
|
|
|
|
|
|
Args:
|
|
|
|
config (dict): The configuration file
|
|
|
|
"""
|
|
|
|
super().__init__(config, False)
|
|
|
|
|
|
|
|
self.model_dir = f'{config["model"]}'
|
|
|
|
|
|
|
|
# load quantized model, currently only support cpu or single gpu
|
|
|
|
self.model = AutoGPTQForCausalLM.from_pretrained(self.model_dir, BaseQuantizeConfig())
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir, use_fast=True )
|
2023-05-18 21:31:18 +02:00
|
|
|
def tokenize(self, prompt):
|
|
|
|
"""
|
|
|
|
Tokenizes the given prompt using the model's tokenizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The input prompt to be tokenized.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
list: A list of tokens representing the tokenized prompt.
|
|
|
|
"""
|
|
|
|
return None
|
2023-05-14 10:12:51 +02:00
|
|
|
|
2023-05-18 21:31:18 +02:00
|
|
|
def detokenize(self, tokens_list):
|
|
|
|
"""
|
|
|
|
Detokenizes the given list of tokens using the model's tokenizer.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tokens_list (list): A list of tokens to be detokenized.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
str: The detokenized text as a string.
|
|
|
|
"""
|
|
|
|
return None
|
2023-05-14 10:12:51 +02:00
|
|
|
def generate(self,
|
|
|
|
prompt:str,
|
|
|
|
n_predict: int = 128,
|
|
|
|
new_text_callback: Callable[[str], None] = bool,
|
|
|
|
verbose: bool = False,
|
|
|
|
**gpt_params ):
|
|
|
|
"""Generates text out of a prompt
|
|
|
|
|
|
|
|
Args:
|
|
|
|
prompt (str): The prompt to use for generation
|
|
|
|
n_predict (int, optional): Number of tokens to prodict. Defaults to 128.
|
|
|
|
new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None.
|
|
|
|
verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
tok = self.tokenizer.decode(self.model.generate(**self.tokenizer(prompt, return_tensors="pt").to("cuda:0"))[0])
|
2023-05-19 03:32:38 +02:00
|
|
|
if new_text_callback is not None:
|
|
|
|
new_text_callback(tok)
|
|
|
|
output = tok
|
2023-05-14 10:12:51 +02:00
|
|
|
"""
|
|
|
|
self.model.reset()
|
|
|
|
for tok in self.model.generate(prompt,
|
|
|
|
n_predict=n_predict,
|
|
|
|
temp=self.config['temp'],
|
|
|
|
top_k=self.config['top_k'],
|
|
|
|
top_p=self.config['top_p'],
|
|
|
|
repeat_penalty=self.config['repeat_penalty'],
|
|
|
|
repeat_last_n = self.config['repeat_last_n'],
|
|
|
|
n_threads=self.config['n_threads'],
|
|
|
|
):
|
|
|
|
if not new_text_callback(tok):
|
|
|
|
return
|
|
|
|
"""
|
|
|
|
except Exception as ex:
|
|
|
|
print(ex)
|
2023-05-19 03:32:38 +02:00
|
|
|
return output
|
2023-05-14 10:12:51 +02:00
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def list_models(config:dict):
|
|
|
|
"""Lists the models for this backend
|
|
|
|
"""
|
|
|
|
|
|
|
|
return [
|
|
|
|
"EleutherAI/gpt-j-6b",
|
|
|
|
"opt-125m-4bit"
|
|
|
|
"TheBloke/medalpaca-13B-GPTQ-4bit",
|
|
|
|
"TheBloke/stable-vicuna-13B-GPTQ",
|
|
|
|
]
|
|
|
|
@staticmethod
|
|
|
|
def get_available_models():
|
|
|
|
# Create the file path relative to the child class's directory
|
|
|
|
backend_path = Path(__file__).parent
|
|
|
|
file_path = backend_path/"models.yaml"
|
|
|
|
|
|
|
|
with open(file_path, 'r') as file:
|
|
|
|
yaml_data = yaml.safe_load(file)
|
|
|
|
|
|
|
|
return yaml_data
|