###### # Project : GPT4ALL-UI # File : backend.py # Author : ParisNeo with the help of the community # Supported by Nomic-AI # license : Apache 2.0 # Description : # This is an interface class for GPT4All-ui backends. ###### from pathlib import Path from typing import Callable from transformers import AutoTokenizer, TextGenerationPipeline from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig from api.backend import LLMBackend import torch import yaml __author__ = "parisneo" __github__ = "https://github.com/ParisNeo/GPTQ_backend" __copyright__ = "Copyright 2023, " __license__ = "Apache 2.0" backend_name = "GPTQ" class GPTQ(LLMBackend): file_extension='*' def __init__(self, config:dict) -> None: """Builds a GPTQ backend Args: config (dict): The configuration file """ super().__init__(config, False) self.model_dir = f'{config["model"]}' # load quantized model, currently only support cpu or single gpu self.model = AutoGPTQForCausalLM.from_pretrained(self.model_dir, BaseQuantizeConfig()) self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir, use_fast=True ) def tokenize(self, prompt): """ Tokenizes the given prompt using the model's tokenizer. Args: prompt (str): The input prompt to be tokenized. Returns: list: A list of tokens representing the tokenized prompt. """ return None def detokenize(self, tokens_list): """ Detokenizes the given list of tokens using the model's tokenizer. Args: tokens_list (list): A list of tokens to be detokenized. Returns: str: The detokenized text as a string. """ return None def generate(self, prompt:str, n_predict: int = 128, new_text_callback: Callable[[str], None] = bool, verbose: bool = False, **gpt_params ): """Generates text out of a prompt Args: prompt (str): The prompt to use for generation n_predict (int, optional): Number of tokens to prodict. Defaults to 128. new_text_callback (Callable[[str], None], optional): A callback function that is called everytime a new text element is generated. Defaults to None. verbose (bool, optional): If true, the code will spit many informations about the generation process. Defaults to False. """ try: tok = self.tokenizer.decode(self.model.generate(**self.tokenizer(prompt, return_tensors="pt").to("cuda:0"))[0]) if new_text_callback is not None: new_text_callback(tok) output = tok """ self.model.reset() for tok in self.model.generate(prompt, n_predict=n_predict, temp=self.config['temp'], top_k=self.config['top_k'], top_p=self.config['top_p'], repeat_penalty=self.config['repeat_penalty'], repeat_last_n = self.config['repeat_last_n'], n_threads=self.config['n_threads'], ): if not new_text_callback(tok): return """ except Exception as ex: print(ex) return output @staticmethod def list_models(config:dict): """Lists the models for this backend """ return [ "EleutherAI/gpt-j-6b", "opt-125m-4bit" "TheBloke/medalpaca-13B-GPTQ-4bit", "TheBloke/stable-vicuna-13B-GPTQ", ] @staticmethod def get_available_models(): # Create the file path relative to the child class's directory backend_path = Path(__file__).parent file_path = backend_path/"models.yaml" with open(file_path, 'r') as file: yaml_data = yaml.safe_load(file) return yaml_data