mirror of
https://github.com/k3ng/k3ng_rotator_controller.git
synced 2025-01-12 07:52:45 +00:00
571 lines
16 KiB
C++
571 lines
16 KiB
C++
#include "LSM303.h"
|
|
#include <Wire.h>
|
|
#include <math.h>
|
|
|
|
// Defines ////////////////////////////////////////////////////////////////
|
|
|
|
// The Arduino two-wire interface uses a 7-bit number for the address,
|
|
// and sets the last bit correctly based on reads and writes
|
|
#define D_SA0_HIGH_ADDRESS 0b0011101 // D with SA0 high
|
|
#define D_SA0_LOW_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
|
#define NON_D_MAG_ADDRESS 0b0011110 // D with SA0 low or non-D magnetometer
|
|
#define NON_D_ACC_SA0_LOW_ADDRESS 0b0011000 // non-D accelerometer with SA0 low
|
|
#define NON_D_ACC_SA0_HIGH_ADDRESS 0b0011001 // non-D accelerometer with SA0 high
|
|
|
|
#define TEST_REG_NACK -1
|
|
|
|
#define D_WHO_ID 0x49
|
|
#define DLM_WHO_ID 0x3C
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
LSM303::LSM303(void)
|
|
{
|
|
/*
|
|
These values lead to an assumed magnetometer bias of 0.
|
|
Use the Calibrate example program to determine appropriate values
|
|
for your particular unit. The Heading example demonstrates how to
|
|
adjust these values in your own sketch.
|
|
*/
|
|
m_min = (LSM303::vector<int16_t>){-32767, -32767, -32767};
|
|
m_max = (LSM303::vector<int16_t>){+32767, +32767, +32767};
|
|
|
|
_device = device_auto;
|
|
|
|
io_timeout = 0; // 0 = no timeout
|
|
did_timeout = false;
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
|
|
// Did a timeout occur in readAcc(), readMag(), or read() since the last call to timeoutOccurred()?
|
|
bool LSM303::timeoutOccurred()
|
|
{
|
|
bool tmp = did_timeout;
|
|
did_timeout = false;
|
|
return tmp;
|
|
|
|
}
|
|
|
|
void LSM303::setTimeout(unsigned int timeout)
|
|
{
|
|
io_timeout = timeout;
|
|
}
|
|
|
|
unsigned int LSM303::getTimeout()
|
|
{
|
|
return io_timeout;
|
|
}
|
|
|
|
bool LSM303::init(deviceType device, sa0State sa0)
|
|
{
|
|
// determine device type if necessary
|
|
if (device == device_auto)
|
|
{
|
|
if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|
{
|
|
// device responds to address 0011101 with D ID; it's a D with SA0 high
|
|
device = device_D;
|
|
sa0 = sa0_high;
|
|
}
|
|
else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|
{
|
|
// device responds to address 0011110 with D ID; it's a D with SA0 low
|
|
device = device_D;
|
|
sa0 = sa0_low;
|
|
}
|
|
// Remaining possibilities: DLHC, DLM, or DLH. DLHC seems to respond to WHO_AM_I request the
|
|
// same way as DLM, even though this register isn't documented in its datasheet, so instead,
|
|
// guess if it's a DLHC based on acc address (Pololu boards pull SA0 low on DLM and DLH;
|
|
// DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high).
|
|
else if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|
{
|
|
// device responds to address 0011001; guess that it's a DLHC
|
|
device = device_DLHC;
|
|
sa0 = sa0_high;
|
|
}
|
|
// Remaining possibilities: DLM or DLH. Check acc with SA0 low address to make sure it's responsive
|
|
else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|
{
|
|
// device responds to address 0011000 with DLM ID; guess that it's a DLM
|
|
sa0 = sa0_low;
|
|
|
|
// Now check WHO_AM_I_M
|
|
if (testReg(NON_D_MAG_ADDRESS, WHO_AM_I_M) == DLM_WHO_ID)
|
|
{
|
|
device = device_DLM;
|
|
}
|
|
else
|
|
{
|
|
device = device_DLH;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// device hasn't responded meaningfully, so give up
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// determine SA0 if necessary
|
|
if (sa0 == sa0_auto)
|
|
{
|
|
if (device == device_D)
|
|
{
|
|
if (testReg(D_SA0_HIGH_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|
{
|
|
sa0 = sa0_high;
|
|
}
|
|
else if (testReg(D_SA0_LOW_ADDRESS, WHO_AM_I) == D_WHO_ID)
|
|
{
|
|
sa0 = sa0_low;
|
|
}
|
|
else
|
|
{
|
|
// no response on either possible address; give up
|
|
return false;
|
|
}
|
|
}
|
|
else if (device == device_DLM || device == device_DLH)
|
|
{
|
|
if (testReg(NON_D_ACC_SA0_HIGH_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|
{
|
|
sa0 = sa0_high;
|
|
}
|
|
else if (testReg(NON_D_ACC_SA0_LOW_ADDRESS, CTRL_REG1_A) != TEST_REG_NACK)
|
|
{
|
|
sa0 = sa0_low;
|
|
}
|
|
else
|
|
{
|
|
// no response on either possible address; give up
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
_device = device;
|
|
|
|
// set device addresses and translated register addresses
|
|
switch (device)
|
|
{
|
|
case device_D:
|
|
acc_address = mag_address = (sa0 == sa0_high) ? D_SA0_HIGH_ADDRESS : D_SA0_LOW_ADDRESS;
|
|
translated_regs[-OUT_X_L_M] = D_OUT_X_L_M;
|
|
translated_regs[-OUT_X_H_M] = D_OUT_X_H_M;
|
|
translated_regs[-OUT_Y_L_M] = D_OUT_Y_L_M;
|
|
translated_regs[-OUT_Y_H_M] = D_OUT_Y_H_M;
|
|
translated_regs[-OUT_Z_L_M] = D_OUT_Z_L_M;
|
|
translated_regs[-OUT_Z_H_M] = D_OUT_Z_H_M;
|
|
break;
|
|
|
|
case device_DLHC:
|
|
acc_address = NON_D_ACC_SA0_HIGH_ADDRESS; // DLHC doesn't have SA0 but uses same acc address as DLH/DLM with SA0 high
|
|
mag_address = NON_D_MAG_ADDRESS;
|
|
translated_regs[-OUT_X_H_M] = DLHC_OUT_X_H_M;
|
|
translated_regs[-OUT_X_L_M] = DLHC_OUT_X_L_M;
|
|
translated_regs[-OUT_Y_H_M] = DLHC_OUT_Y_H_M;
|
|
translated_regs[-OUT_Y_L_M] = DLHC_OUT_Y_L_M;
|
|
translated_regs[-OUT_Z_H_M] = DLHC_OUT_Z_H_M;
|
|
translated_regs[-OUT_Z_L_M] = DLHC_OUT_Z_L_M;
|
|
break;
|
|
|
|
case device_DLM:
|
|
acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
|
mag_address = NON_D_MAG_ADDRESS;
|
|
translated_regs[-OUT_X_H_M] = DLM_OUT_X_H_M;
|
|
translated_regs[-OUT_X_L_M] = DLM_OUT_X_L_M;
|
|
translated_regs[-OUT_Y_H_M] = DLM_OUT_Y_H_M;
|
|
translated_regs[-OUT_Y_L_M] = DLM_OUT_Y_L_M;
|
|
translated_regs[-OUT_Z_H_M] = DLM_OUT_Z_H_M;
|
|
translated_regs[-OUT_Z_L_M] = DLM_OUT_Z_L_M;
|
|
break;
|
|
|
|
case device_DLH:
|
|
acc_address = (sa0 == sa0_high) ? NON_D_ACC_SA0_HIGH_ADDRESS : NON_D_ACC_SA0_LOW_ADDRESS;
|
|
mag_address = NON_D_MAG_ADDRESS;
|
|
translated_regs[-OUT_X_H_M] = DLH_OUT_X_H_M;
|
|
translated_regs[-OUT_X_L_M] = DLH_OUT_X_L_M;
|
|
translated_regs[-OUT_Y_H_M] = DLH_OUT_Y_H_M;
|
|
translated_regs[-OUT_Y_L_M] = DLH_OUT_Y_L_M;
|
|
translated_regs[-OUT_Z_H_M] = DLH_OUT_Z_H_M;
|
|
translated_regs[-OUT_Z_L_M] = DLH_OUT_Z_L_M;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
Enables the LSM303's accelerometer and magnetometer. Also:
|
|
- Sets sensor full scales (gain) to default power-on values, which are
|
|
+/- 2 g for accelerometer and +/- 1.3 gauss for magnetometer
|
|
(+/- 4 gauss on LSM303D).
|
|
- Selects 50 Hz ODR (output data rate) for accelerometer and 7.5 Hz
|
|
ODR for magnetometer (6.25 Hz on LSM303D). (These are the ODR
|
|
settings for which the electrical characteristics are specified in
|
|
the datasheets.)
|
|
- Enables high resolution modes (if available).
|
|
Note that this function will also reset other settings controlled by
|
|
the registers it writes to.
|
|
*/
|
|
void LSM303::enableDefault(void)
|
|
{
|
|
|
|
if (_device == device_D)
|
|
{
|
|
// Accelerometer
|
|
|
|
// 0x57 = 0b01010111
|
|
// AFS = 0 (+/- 2 g full scale)
|
|
writeReg(CTRL2, 0x00);
|
|
|
|
// 0x57 = 0b01010111
|
|
// AODR = 0101 (50 Hz ODR); AZEN = AYEN = AXEN = 1 (all axes enabled)
|
|
writeReg(CTRL1, 0x57);
|
|
|
|
// Magnetometer
|
|
|
|
// 0x64 = 0b01100100
|
|
// M_RES = 11 (high resolution mode); M_ODR = 001 (6.25 Hz ODR)
|
|
writeReg(CTRL5, 0x64);
|
|
|
|
// 0x20 = 0b00100000
|
|
// MFS = 01 (+/- 4 gauss full scale)
|
|
writeReg(CTRL6, 0x20);
|
|
|
|
// 0x00 = 0b00000000
|
|
// MLP = 0 (low power mode off); MD = 00 (continuous-conversion mode)
|
|
writeReg(CTRL7, 0x00);
|
|
}
|
|
else if (_device == device_DLHC)
|
|
{
|
|
// Accelerometer
|
|
|
|
// 0x08 = 0b00001000
|
|
// FS = 00 (+/- 2 g full scale); HR = 1 (high resolution enable)
|
|
writeAccReg(CTRL_REG4_A, 0x08);
|
|
|
|
// 0x47 = 0b01000111
|
|
// ODR = 0100 (50 Hz ODR); LPen = 0 (normal mode); Zen = Yen = Xen = 1 (all axes enabled)
|
|
writeAccReg(CTRL_REG1_A, 0x47);
|
|
|
|
// Magnetometer
|
|
|
|
// 0x0C = 0b00001100
|
|
// DO = 011 (7.5 Hz ODR)
|
|
writeMagReg(CRA_REG_M, 0x0C);
|
|
|
|
// 0x20 = 0b00100000
|
|
// GN = 001 (+/- 1.3 gauss full scale)
|
|
writeMagReg(CRB_REG_M, 0x20);
|
|
|
|
// 0x00 = 0b00000000
|
|
// MD = 00 (continuous-conversion mode)
|
|
writeMagReg(MR_REG_M, 0x00);
|
|
}
|
|
else // DLM, DLH
|
|
{
|
|
// Accelerometer
|
|
|
|
// 0x00 = 0b00000000
|
|
// FS = 00 (+/- 2 g full scale)
|
|
writeAccReg(CTRL_REG4_A, 0x00);
|
|
|
|
// 0x27 = 0b00100111
|
|
// PM = 001 (normal mode); DR = 00 (50 Hz ODR); Zen = Yen = Xen = 1 (all axes enabled)
|
|
writeAccReg(CTRL_REG1_A, 0x27);
|
|
|
|
// Magnetometer
|
|
|
|
// 0x0C = 0b00001100
|
|
// DO = 011 (7.5 Hz ODR)
|
|
writeMagReg(CRA_REG_M, 0x0C);
|
|
|
|
// 0x20 = 0b00100000
|
|
// GN = 001 (+/- 1.3 gauss full scale)
|
|
writeMagReg(CRB_REG_M, 0x20);
|
|
|
|
// 0x00 = 0b00000000
|
|
// MD = 00 (continuous-conversion mode)
|
|
writeMagReg(MR_REG_M, 0x00);
|
|
}
|
|
}
|
|
|
|
// Writes an accelerometer register
|
|
void LSM303::writeAccReg(regAddr reg, byte value)
|
|
{
|
|
Wire.beginTransmission(acc_address);
|
|
Wire.write((byte)reg);
|
|
Wire.write(value);
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Reads an accelerometer register
|
|
byte LSM303::readAccReg(regAddr reg)
|
|
{
|
|
byte value;
|
|
|
|
Wire.beginTransmission(acc_address);
|
|
Wire.write((byte)reg);
|
|
last_status = Wire.endTransmission();
|
|
Wire.requestFrom(acc_address, (byte)1);
|
|
value = Wire.read();
|
|
Wire.endTransmission();
|
|
|
|
return value;
|
|
}
|
|
|
|
// Writes a magnetometer register
|
|
void LSM303::writeMagReg(regAddr reg, byte value)
|
|
{
|
|
Wire.beginTransmission(mag_address);
|
|
Wire.write((byte)reg);
|
|
Wire.write(value);
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Reads a magnetometer register
|
|
byte LSM303::readMagReg(regAddr reg)
|
|
{
|
|
byte value;
|
|
|
|
// if dummy register address (magnetometer Y/Z), look up actual translated address (based on device type)
|
|
if (reg < 0)
|
|
{
|
|
reg = translated_regs[-reg];
|
|
}
|
|
|
|
Wire.beginTransmission(mag_address);
|
|
Wire.write((byte)reg);
|
|
last_status = Wire.endTransmission();
|
|
Wire.requestFrom(mag_address, (byte)1);
|
|
value = Wire.read();
|
|
Wire.endTransmission();
|
|
|
|
return value;
|
|
}
|
|
|
|
void LSM303::writeReg(regAddr reg, byte value)
|
|
{
|
|
// mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
|
// Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
|
if (_device == device_D || reg < CTRL_REG1_A)
|
|
{
|
|
writeMagReg(reg, value);
|
|
}
|
|
else
|
|
{
|
|
writeAccReg(reg, value);
|
|
}
|
|
}
|
|
|
|
// Note that this function will not work for reading TEMP_OUT_H_M and TEMP_OUT_L_M on the DLHC.
|
|
// To read those two registers, use readMagReg() instead.
|
|
byte LSM303::readReg(regAddr reg)
|
|
{
|
|
// mag address == acc_address for LSM303D, so it doesn't really matter which one we use.
|
|
// Use writeMagReg so it can translate OUT_[XYZ]_[HL]_M
|
|
if (_device == device_D || reg < CTRL_REG1_A)
|
|
{
|
|
return readMagReg(reg);
|
|
}
|
|
else
|
|
{
|
|
return readAccReg(reg);
|
|
}
|
|
}
|
|
|
|
// Reads the 3 accelerometer channels and stores them in vector a
|
|
void LSM303::readAcc(void)
|
|
{
|
|
Wire.beginTransmission(acc_address);
|
|
// assert the MSB of the address to get the accelerometer
|
|
// to do slave-transmit subaddress updating.
|
|
Wire.write(OUT_X_L_A | (1 << 7));
|
|
last_status = Wire.endTransmission();
|
|
Wire.requestFrom(acc_address, (byte)6);
|
|
|
|
unsigned int millis_start = millis();
|
|
while (Wire.available() < 6) {
|
|
if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
|
{
|
|
did_timeout = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
byte xla = Wire.read();
|
|
byte xha = Wire.read();
|
|
byte yla = Wire.read();
|
|
byte yha = Wire.read();
|
|
byte zla = Wire.read();
|
|
byte zha = Wire.read();
|
|
|
|
// combine high and low bytes
|
|
// This no longer drops the lowest 4 bits of the readings from the DLH/DLM/DLHC, which are always 0
|
|
// (12-bit resolution, left-aligned). The D has 16-bit resolution
|
|
a.x = (int16_t)(xha << 8 | xla);
|
|
a.y = (int16_t)(yha << 8 | yla);
|
|
a.z = (int16_t)(zha << 8 | zla);
|
|
}
|
|
|
|
// Reads the 3 magnetometer channels and stores them in vector m
|
|
void LSM303::readMag(void)
|
|
{
|
|
Wire.beginTransmission(mag_address);
|
|
// If LSM303D, assert MSB to enable subaddress updating
|
|
// OUT_X_L_M comes first on D, OUT_X_H_M on others
|
|
Wire.write((_device == device_D) ? translated_regs[-OUT_X_L_M] | (1 << 7) : translated_regs[-OUT_X_H_M]);
|
|
last_status = Wire.endTransmission();
|
|
Wire.requestFrom(mag_address, (byte)6);
|
|
|
|
unsigned int millis_start = millis();
|
|
while (Wire.available() < 6) {
|
|
if (io_timeout > 0 && ((unsigned int)millis() - millis_start) > io_timeout)
|
|
{
|
|
did_timeout = true;
|
|
return;
|
|
}
|
|
}
|
|
|
|
byte xlm, xhm, ylm, yhm, zlm, zhm;
|
|
|
|
if (_device == device_D)
|
|
{
|
|
/// D: X_L, X_H, Y_L, Y_H, Z_L, Z_H
|
|
xlm = Wire.read();
|
|
xhm = Wire.read();
|
|
ylm = Wire.read();
|
|
yhm = Wire.read();
|
|
zlm = Wire.read();
|
|
zhm = Wire.read();
|
|
}
|
|
else
|
|
{
|
|
// DLHC, DLM, DLH: X_H, X_L...
|
|
xhm = Wire.read();
|
|
xlm = Wire.read();
|
|
|
|
if (_device == device_DLH)
|
|
{
|
|
// DLH: ...Y_H, Y_L, Z_H, Z_L
|
|
yhm = Wire.read();
|
|
ylm = Wire.read();
|
|
zhm = Wire.read();
|
|
zlm = Wire.read();
|
|
}
|
|
else
|
|
{
|
|
// DLM, DLHC: ...Z_H, Z_L, Y_H, Y_L
|
|
zhm = Wire.read();
|
|
zlm = Wire.read();
|
|
yhm = Wire.read();
|
|
ylm = Wire.read();
|
|
}
|
|
}
|
|
|
|
// combine high and low bytes
|
|
m.x = (int16_t)(xhm << 8 | xlm);
|
|
m.y = (int16_t)(yhm << 8 | ylm);
|
|
m.z = (int16_t)(zhm << 8 | zlm);
|
|
}
|
|
|
|
// Reads all 6 channels of the LSM303 and stores them in the object variables
|
|
void LSM303::read(void)
|
|
{
|
|
readAcc();
|
|
readMag();
|
|
}
|
|
|
|
/*
|
|
Returns the angular difference in the horizontal plane between a
|
|
default vector and north, in degrees.
|
|
|
|
The default vector here is chosen to point along the surface of the
|
|
PCB, in the direction of the top of the text on the silkscreen.
|
|
This is the +X axis on the Pololu LSM303D carrier and the -Y axis on
|
|
the Pololu LSM303DLHC, LSM303DLM, and LSM303DLH carriers.
|
|
*/
|
|
float LSM303::heading(void)
|
|
{
|
|
if (_device == device_D)
|
|
{
|
|
return heading((vector<int>){1, 0, 0});
|
|
}
|
|
else
|
|
{
|
|
return heading((vector<int>){0, -1, 0});
|
|
}
|
|
}
|
|
|
|
/*
|
|
Returns the angular difference in the horizontal plane between the
|
|
"from" vector and north, in degrees.
|
|
|
|
Description of heading algorithm:
|
|
Shift and scale the magnetic reading based on calibration data to find
|
|
the North vector. Use the acceleration readings to determine the Up
|
|
vector (gravity is measured as an upward acceleration). The cross
|
|
product of North and Up vectors is East. The vectors East and North
|
|
form a basis for the horizontal plane. The From vector is projected
|
|
into the horizontal plane and the angle between the projected vector
|
|
and horizontal north is returned.
|
|
*/
|
|
template <typename T> float LSM303::heading(vector<T> from)
|
|
{
|
|
vector<int32_t> temp_m = {m.x, m.y, m.z};
|
|
|
|
// subtract offset (average of min and max) from magnetometer readings
|
|
temp_m.x -= ((int32_t)m_min.x + m_max.x) / 2;
|
|
temp_m.y -= ((int32_t)m_min.y + m_max.y) / 2;
|
|
temp_m.z -= ((int32_t)m_min.z + m_max.z) / 2;
|
|
|
|
// compute E and N
|
|
vector<float> E;
|
|
vector<float> N;
|
|
vector_cross(&temp_m, &a, &E);
|
|
vector_normalize(&E);
|
|
vector_cross(&a, &E, &N);
|
|
vector_normalize(&N);
|
|
|
|
// compute heading
|
|
float heading = atan2(vector_dot(&E, &from), vector_dot(&N, &from)) * 180 / M_PI;
|
|
if (heading < 0) heading += 360;
|
|
return heading;
|
|
}
|
|
|
|
template <typename Ta, typename Tb, typename To> void LSM303::vector_cross(const vector<Ta> *a,const vector<Tb> *b, vector<To> *out)
|
|
{
|
|
out->x = (a->y * b->z) - (a->z * b->y);
|
|
out->y = (a->z * b->x) - (a->x * b->z);
|
|
out->z = (a->x * b->y) - (a->y * b->x);
|
|
}
|
|
|
|
template <typename Ta, typename Tb> float LSM303::vector_dot(const vector<Ta> *a, const vector<Tb> *b)
|
|
{
|
|
return (a->x * b->x) + (a->y * b->y) + (a->z * b->z);
|
|
}
|
|
|
|
void LSM303::vector_normalize(vector<float> *a)
|
|
{
|
|
float mag = sqrt(vector_dot(a, a));
|
|
a->x /= mag;
|
|
a->y /= mag;
|
|
a->z /= mag;
|
|
}
|
|
|
|
// Private Methods //////////////////////////////////////////////////////////////
|
|
|
|
int LSM303::testReg(byte address, regAddr reg)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write((byte)reg);
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (byte)1);
|
|
if (Wire.available())
|
|
return Wire.read();
|
|
else
|
|
return TEST_REG_NACK;
|
|
}
|