Martin Stein 99254b4d52 nic_router: bind link state to remote DNS config
The NIC router README claims that the 'dns_config_from' attribute in a DHCP
server configuration binds the propagated link state of all interfaces at the
domain of the server to the validity of the IP config of the domain that is
given through 'dns_config_from'.

However, this was not true. The router missed to implement this detail which
led to clients of such a DHCP server sending DHCP DISCOVER packets too early.
These early DHCP DISCOVER packets were dropped by the router potentially
causing a big delay until the client started a new attempt. Unnecessary long
network boot-up delays were observed with at least the lwip run script and
Sculpt on the PinePhone and could be tracked down to this former
inconsistency in the router.

This commit fixes the inconsistency.

Fixes #4612
2022-09-21 12:19:09 +02:00
2020-03-26 11:38:54 +01:00
2022-08-31 14:04:57 +02:00

                      =================================
                      Genode Operating System Framework
                      =================================


This is the source tree of the reference implementation of the Genode OS
architecture. For a general overview about the architecture, please refer to
the project's official website:

:Official project website for the Genode OS Framework:

  [https://genode.org/documentation/general-overview]

The current implementation can be compiled for 8 different kernels: Linux,
L4ka::Pistachio, L4/Fiasco, OKL4, NOVA, Fiasco.OC, seL4, and a custom "hw"
microkernel for running Genode without a 3rd-party kernel. Whereas the Linux
version serves us as development vehicle and enables us to rapidly develop the
generic parts of the system, the actual target platforms of the framework are
microkernels. There is no "perfect" microkernel - and neither should there be
one. If a microkernel pretended to be fit for all use cases, it wouldn't be
"micro". Hence, all microkernels differ in terms of their respective features,
complexity, and supported hardware architectures.

Genode allows the use of each of the kernels listed above with a rich set of
device drivers, protocol stacks, libraries, and applications in a uniform way.
For developers, the framework provides an easy way to target multiple different
kernels instead of tying the development to a particular kernel technology. For
kernel developers, Genode contributes advanced workloads, stress-testing their
kernel, and enabling a variety of application use cases that would not be
possible otherwise. For users and system integrators, it enables the choice of
the kernel that fits best with the requirements at hand for the particular
usage scenario.


Documentation
#############

The primary documentation is the book "Genode Foundations", which is available
on the front page of Genode website:

:Download the book "Genode Foundations":

  [https://genode.org]

The book describes Genode in a holistic and comprehensive way. It equips you
with a thorough understanding of the architecture, assists developers with the
explanation of the development environment and system configuration, and
provides a look under the hood of the framework. Furthermore, it contains the
specification of the framework's programming interface.

The project has a quarterly release cycle. Each version is accompanied with
detailed release documentation, which is available at the documentation
section of the project website:

:Release documentation:

  [https://genode.org/documentation/release-notes/]


Directory overview
##################

The source tree is composed of the following subdirectories:

:'doc':

  This directory contains general documentation along with a comprehensive
  collection of release notes.

:'repos':

  This directory contains the source code, organized in so-called source-code
  repositories. Please refer to the README file in the 'repos' directory to
  learn more about the roles of the individual repositories.

:'tool':

  Source-code management tools and scripts. Please refer to the README file
  contained in the directory.

:'depot':

  Directory used by Genode's package-management tools. It contains the public
  keys and download locations of software providers.


Additional hardware support
###########################

The framework supports a variety of hardware platforms such as different ARM
SoC families via supplemental repositories.

:Repositories maintained by Genode Labs:

  [https://github.com/orgs/genodelabs/repositories]


Additional community-maintained components
##########################################

The components found within the main source tree are complemented by a growing
library of additional software, which can be seamlessly integrated into Genode
system scenarios.

:Genode-world repository:

  [https://github.com/genodelabs/genode-world]


Contact
#######

The best way to get in touch with Genode developers and users is the project's
mailing list. Please feel welcome to join in!

:Genode Mailing Lists:

  [https://genode.org/community/mailing-lists]


Commercial support
##################

The driving force behind the Genode OS Framework is the German company Genode
Labs. The company offers commercial licensing, trainings, support, and
contracted development work:

:Genode Labs website:

  [https://www.genode-labs.com]

Languages
C++ 73.9%
C 17.8%
Makefile 4.4%
Tcl 1.3%
PHP 0.9%
Other 1.5%