This patch adds a 'gdb' command to 'cli_monitor', which makes it possible
to debug an application with GDB.
The command works similarly to the 'start' command, but instead of
starting the subsystem binary directly, an 'init' subsystem gets
started, which then starts 'terminal_crosslink', 'noux', GDB and
'gdb_monitor' (which starts the application binary as its target).
So, for the 'gdb' command to work, these additional components need to
be available, too. 'terminal_crosslink', 'noux', 'gdb_monitor' and the
file 'gdb_command_config' are expected to be ROM modules. The Noux GDB
client needs to get mounted at '/bin' in Noux and the target binaries need
to be available as ROM modules (loaded by 'gdb_monitor') and also mounted
at '/gdb' in Noux (loaded by the GDB client).
Additionally, the source code of the target application can be provided
at '/gdb/src/ in Noux. How the Noux mountings get established can
be configured in the 'gdb_command_config' file. The default configuration
in 'os/src/server/cli_monitor/gdb_command_config' mounts GDB from a tar
archive named 'gdb.tar', the GDB target binaries from a tar archive named
'gdb_target.tar' and the target source code from a tar archive named
'gdb_target-src.tar'.
The patch includes an 'expect' include file (ports/run/noux_gdb.inc)
which provides functions that help to create those tar files:
- 'create_gdb_tar' creates a tar archive for the 'gdb' client
- 'create_binary_tar' creates a tar archive for the target application
- 'create_source_tar' creates a tar archive for the source code of
the target application
- 'create_binary_and_source_tars' is a convenience wrapper for the previous
two functions
The patch also includes an example run script
(ports/run/noux_gdb_dynamic.run).
The 'gdb' command supports the following command line options:
- --ram: the initial RAM quota provided to the whole subsystem
(including the GDB-related components)
- --ram-limit: limit for expanding RAM quota
- --gdb-ram-preserve: the RAM quota that 'gdb_monitor' ahould preserve
for itself
Fixes#928.
When a child requests more ram resources, it gets blocked immediately when
the preservation limit is reached. Otherwise, it might happen that the
cli_monitor runs out of memory.
When a command was executed, it is necessary to check not only whether the
preservation limit of the ram quota is reached, but also whether new ram quota
is available (e.g.: consequence of the kill command), and children are waiting
for additional resources.
This patch changes the interface of Nitpicker to support dynamically
dimensioned virtual frame buffers. This solves two problems:
First, it enables a client to create a connection to nitpicker without
donating much session quota in advance. The old interface required each
screen-size-dependent client to donate as much memory as needed to
allocate a screen-sized virtual framebuffer. For clients that are
interested int the screen size but cover just a small portion of the
screen (e.g., a banner, a menu, an applet that sits in the screen
corner), this overprovisioning is painful. The new interface allows such
clients to upgrade the session quota for an existing session as needed.
Second, because each nitpicker session used to have a virtual frame
buffer with a fixed size over the lifetime of the session, a client that
wanted to implement a variable-sized window had to either vastly
overprovide resources (by opening a session as large as the screen just
in order to be prepared for the worst case of a maximized window), or it
had to replace the session by a new one (thereby discarding the stacking
order of the old views) each time the window changes its dimensions. The
new interface accommodates such clients much better.
USB HID gets stuck due to strange kernel error
as HDMI starts simulatnously. This workaround
delays HDMI init by a second (only in case we
build for Exynos5 & FOC with USB) to let
scenarious like demo get their USB HID started
without much CPU load.
ref #796
For the framebuffer driver of the i.MX53 platform to work even when u-boot
didn't prepared the display previously, there were some IOMUX routes missing.
Fixes#914
By now, only one button press/release event per IRQ was handled correctly.
Pressing and/or releasing several buttons concurrently could bring the input
driver into an inconsistent state.
Fixes#913
* Remove far too low default values from Nic::Connection constructor
* Extend lwip initialization function with desired TX/RX buffer sizes
* Add configuration possibility to libc_lwip_dhcp plugin to define
buffer sizes, like the following:
'<libc tx_buf_size="1M" tx_buf_size="1M"/>'
Fixes#892
At this point we cannot close the connection anymore because all
mappings are gone and the needed stack is invalid. This is not a
problem since process will be discarded anyway.
Fixes#909.
This patch introduces new commands for dynamically balancing RAM between
subsystems. The 'status' command prints a table with the RAM status of
each subsystem. The 'ram' command changes the quota or a quota limit of
a given subsystem. The quota limit can be defined to allow the on-demand
expansion of the quota. Finally, the 'yield' command can be used to
instruct a subsystem to yield a specified amount of resources.
For trying out the new commands, a so-called 'ram_eater' example has
been added to the 'terminal_mux.run' scenario. This program simulates a
subsystem with a growing demand for resources, yet with the capability
to yield resources when instructed by the parent (i.e., cli_monitor).
Besides implementing the new features, the patch splits the
implementation of 'cli_monitor' into multiple files.
After announcing the NIC service, the bridge connects to the driver to
ensure to see any incoming traffic in case the client itself only reacts
on connects from LAN (e.g., the netperf server).
Also, some styling issues were fixed.
Prior this change, the attempt to re-schedule a timer from its timer
handler resulted in a clear '_pending' flag. This caused the timer event
to disappear from the scheduling queue without the handler being called
ever again. By resetting the '_pending' value before calling the hander,
we prevent a re-scheduled '_pending' flag to be cleared immediately
after calling the handler.
By splitting Session_policy into two classes, we make it more flexible.
Originally, the constructor accepted solely an args string, which made it
unusable for situations where we already have extracted the session
label (e.g., stored in the session meta data of a server). Now, the
extraction of the label from the args string is performed by the new
Session_label class instead, which, in turn, can be passed to the
constructor of Session_policy.
This change causes a minor API change. The following code
Session_policy policy(session_args);
Must be turned into
Session_label label(session_args);
Session_policy policy(label);
This patch overhauls the signal handling of nitpicker to clear the way
towards dynamic reconfiguration. Furthermore, it moves the
implementation of the global-keys handling and input utilities to
separate files.
Originally, the convenience utility for accessing a process
configuration came in the form of a header file. But this causes
aliasing problems if multiple compilation units access the config while
the configuration gets dynamically updated. Moving the implementation of
the accessor to the singleton object into a library solves those
problems.
This patch adds support for iterating through a const list. This allows
users of lists to be more rigid with regard to constness. Furthermore,
the patch adds the function 'List::insert_at' for inserting an element
at a specified position. By adding this function, we can remove code
duplication in nitpicker.
Instead of using msleep to sleep periodically, and then increase jiffies
counter in the alarm scheduler implementation of the timed semaphore
use the 'trigger_periodic' call introduced by the change of the timer session
interface into an asynchronous one. Thereby, we can reduce the necessary IPC
communication with the timer service effectively.
Ref #35
As it turns out using -fPIC was not the issue but discarding certain
sections. The policy_module_table is now located in .data.rel which
needs to be at the beginning of the binary.
Fixes#849.