The VFS library can be used in single-threaded or multi-threaded
environments and depending on that, signals are handled by the same thread
which uses the VFS library or possibly by a different thread. If a VFS
plugin needs to block to wait for a signal, there is currently no way
which works reliably in both environments.
For this reason, this commit makes the interface of the VFS library
nonblocking, similar to the File_system session interface.
The most important changes are:
- Directories are created and opened with the 'opendir()' function and the
directory entries are read with the recently introduced 'queue_read()'
and 'complete_read()' functions.
- Symbolic links are created and opened with the 'openlink()' function and
the link target is read with the 'queue_read()' and 'complete_read()'
functions and written with the 'write()' function.
- The 'write()' function does not wait for signals anymore. This can have
the effect that data written by a VFS library user has not been
processed by a file system server yet when the library user asks for the
size of the file or closes it (both done with RPC functions at the file
system server). For this reason, a user of the VFS library should
request synchronization before calling 'stat()' or 'close()'. To make
sure that a file system server has processed all write request packets
which a client submitted before the synchronization request,
synchronization is now requested at the file system server with a
synchronization packet instead of an RPC function. Because of this
change, the synchronization interface of the VFS library is now split
into 'queue_sync()' and 'complete_sync()' functions.
Fixes#2399
We used a hardware timer locally in the RPI USB driver because a timer
connection was not precise enough to fullfill the host controllers
requirements.
With the modern timer connection interface, however, reading out time at
a connection is microseconds precise and we can remove the local timer.
But we cannot use the same timer connection for doing legacy-interface
stuff like usleep (currently used in LX kit) and modern-interface stuff
like curr_time. Thus, we open two connections for now.
Ref #2400
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403
This macro is implicitly pulled in by libc-setjmp (via the libc's
cdefs.h). However, apparently not all sources include <setjmp.h>.
Unfortunately, for sources that do, this change produces a
double-definition warning. We should fix it by removing the dependency
from the libc's setjmp.
Ldso now does not automatically execute static constructors of the
binary and shared libraries the binary depends on. If static
construction is required (e.g., if a shared library with constructor is
used or a compilation unit contains global statics) the component needs
to execute the constructors explicitly in Component::construct() via
Genode::Env::exec_static_constructors().
In the case of libc components this is done by the libc startup code
(i.e., the Component::construct() implementation in the libc).
The loading of shared objects at runtime is not affected by this change
and constructors of those objects are executed immediately.
Fixes#2332
The MIN_PSK_LENGTH constant was not adjusted to accommodate for the
semcantic change when switching from using the raw char array to using
the Genode::String class. The Genode::String::length() method includes
the terminating NUL byte while strlen() does not.
Fixes#2296.
The 'server_ip' and 'server_port' attributes for 'lxip/udp_client' and
'lwip/http_clnt' as well as the 'port' attribute for 'lxip/udp_echo' and
'lwip/http_srv_static' are not directly libc-related so they should not
live in the libc tag but in the config tag of the component.
Ref #2193
This commit includes changes to the Nic::Session_component interface.
We now pass the entire env to the component instead of only ram, rm and
the ep because we need the env to open connections from within the
Session_component implemenation. So far only the cadence_gem driver
needs this, though.
Issue #2280.
This commit enables compile-time warnings displayed whenever a deprecated
API header is included, and adjusts the existing #include directives
accordingly.
Issue #1987