This decouples the size of the mode transition control region from the
minimal mapping size of the page tables implementation. Rather, the CPU
architecture is able to specify the actual size.
Rationale: For x86_64, we need the mtc region to span two pages in order
to store all the tables required to perform the mode switch.
The size of empty structs differs in C (0 byte) and C++ (1 byte), which
leads to different offsets in compound structures. This fixes the driver
on 32Bit platforms.
Issue #1439.
The wireless stack calls timer_before(foo, timer.expires) and up to now
it was always 0. Let's be save and set this field when scheduling the
timer, although it worked fine so far.
Issue #1439.
We will always see this error message when the driver is started. It
is expected and not an actual error. When the driver is running it will
not allocate larger chunks than the Slab provides. Therefore, we can
safely ignore this message.
Issue #1439.
Some functions in the time manager, for example 'TMTimerSet()' and
'TMTimerStop()' let VirtualBox abort with a failed assertion if the timer
does not change to a 'stable' state after 1000 calls of a mixture of
'yield' and 'sleep'. On Genode, this happens sometimes when the 'EMT'
thread is executing 'TMTimerSet()' and gets interrupted by the 'TAP'
thread, which calls 'TMTimerStop()' and waits for the 'EMT' thread to
finish setting the timer. Since the 'EMT' thread has the lowest priority,
1000 retries can be too few. Without the assertion, these functions would
return an error code, which is often ignored by the caller, so it seems
safer to keep retrying until the function can return successfully.
Fixes#1437
Among others, this function is used in the for_each_set_big() macro,
which is used when configuring the data rate tables. Therefore, this
fixes observed performance issues.
Fixes#1439.
If running multiple VBox VMMs with Windows as guest concurrently then it may
happen that the system seem to hang. It turned out that actually
a VM-exit storm (vmx_exception->handle_exc_nm) causes a endless loop between
kernel and vCPU. Nothing gets scheduled nor interrupts are received anymore.
The referenced kernel commit fixes this issue.
Issue #1343
Drivers like SD-Card, platform, AHCI, and framebuffer are specified as Exynos5
compliant. But they are at least not compliant with Odroid-XU although this is
Exynos5. Thus, prevent tests that rely on such drivers when building for
hw_odoid_xu. Furthermore, make previous Arndale regulator/consts.h,
uart_defs.h, and some Board_base enums available to all Exynos5 builds to
enable at least building the drivers.
Fixes#1419
For the USB-Armory, we use a newer version of Linux (3.18) as for the
i.MX53-QSB. The main difference is, that the newer Linux uses a DTB instead of
ATAGs.
Fixes#1422
The USB Armory is almost the same as the i.MX53-QSB but it uses only
one of the two RAM banks available in i.MX53. Furthermore we use the USB
Armory only with Trustzone enabled.
Ref #1422
With the new run tool, there is no more is_qemu_available function. However,
some scripts still try to use it because only frequently used scripts were
updated by now. The commit replaces the function calls with the new
'have_include power_on/qemu' check.
Ref #1419
The wifi_drv now provides two reports. The first one contains all
accesspoints that were found while scanning the supported frequencies.
The second one reports the state of the driver, i.e., if it is
conntected to an accesspoint or not. In addition to that, the driver
now gets its configuration via a ROM session.
More detailed information are available in 'repos/dde_linux/README'.
Issue #1415.
* enables world-switch using ARM virtualization extensions
* split TrustZone and virtualization extensions hardly from platforms,
where it is not used
* extend 'Vm_session' interface to enable configuration of guest-physical memory
* introduce VM destruction syscall
* add virtual machine monitor for hw_arndale that emulates a simplified version
of ARM's Versatile Express Cortex A15 board for a Linux guest OS
Fixes#1405
To enable support of hardware virtualization for ARM on the Arndale board,
the cpu needs to be prepared to enter the non-secure mode, as long as it does
not already run in it. Therefore, especially the interrupt controller and
some TrustZone specific system registers need to be prepared. Moreover,
the exception vector for the hypervisor needs to be set up properly, before
booting normally in the supervisor mode of the non-secure world.
Ref #1405
To enable the usage of virtualization extension related instructions
there is the need to enable the '-mcpu=cortex_a15' compiler flag on
those cpus. To not conflict with other compiler flags (Ref #810) we've
to disable the '-march=arm_v7a' flag.
Ref #1405
The generalization of interrupt objects in the kernel and the use of
C++ polymorphism instead of explicitely checking for special interrupts
within generic code (Cpu_job::_interrupt) enables the registration of
additional interrupts used by the kernel, which are needed for specific
aspects added to the kernel, like ARM hardware virtualization interrupts.
* Introduce generic base class for interrupt objects handled by the kernel
* Derive an interrupt class for those handled by the user-land
* Implement IPI-specific interrupt class
* Implement timer interrupts using the new generic base class
Ref #1405
Until now, one distinct software generated IRQ per cpu was used to
send signals between cpus. As ARM's GIC has 16 software generated
IRQs only, and they need to be partitioned between secure/non-secure
TrustZone world as well as virtual and non-virtual worlds, we should
save them.
Ref #1405
* name irq controller memory mapped I/O regions consistently
in board descriptions
* move irq controller and timer memory mapped I/O region descriptions
from cpu class to board class
* eliminate artificial distinction between flavors of ARM's GIC
* factor cpu local initialization out of ARM's GIC interface description,
which is needed if the GIC is initialized differently e.g. for TrustZone
Ref #1405
The 'dest' target is renamed in the updated rump version to 'dest.stage'. This
triggered some building steps, even when the targets already existed.
Issue #1409
The handling of MMIO regions now supports more pathological cases with
weird cross references. Also, MMIO regions are releases after the
parsing is done.
Fixes#998
Setting the ACTLR.SMP bit also without SMP support fastens RAM access
significantly. A proper solution would implement SMP support which must enable
the bit anyway.
Fixes#1353
When returning early on directory operations, file systems that might
be able to handle the request but come after the current one are not
tried.
Fixes#1400.
Up to now Noux used the libc sleep functions, which actually is not
possible because the _nanosleep() function implemented by our libc
creates a new thread to handle the timeout. Noux childs may have
only one thread, e.g., the main thread, though. To fix this issue
sleeping is now handled directly by Noux. It is implemented by calling
select(2) with a timeout. This fix is needed for mutt(1), which calls
sleep when it prints a notification for the user.
Fixes#1374.
Since rump now requires large buffers of random numbers (>= 512 bytes), use the
jitterentropy library instead of the slow timer pseudo random number generation.
Fixes#1393
To circumvent compilation errors with the older L4Android Linux kernel
version, the ballooning driver is included in the more recent L4Linux
kernel only. Moreover, to be able to maintain L4Android / L4Linux in a more
convenient way, e.g. to apply patches valid for both versions, we use
the same git clone that is used for L4Linux instead of using the upstream
L4Android version by applying patches.
Fixes#1390
Instead of returning an uint64_t value, return a structured time stamp.
This change is only visible to components using Rtc_session directly.
Fixes#1381.
Up until now 'schedule_timeout' did only wait for the next signal to occur.
However, we might run into situations where there won't occur signals for longer
periods of time. Therefore, we took care of the respective timeout handling.
This commit also adds Genode's tracing support
Issue #1310
This has been broken for a while now. Use correct (global) signal transmission,
do not use local signal transmission, as signals seems to get lost.
Issue #1310
This patch changes the Shared_object::lookup function to use a
reinterpret_cast instead of a static_cast to allow the conversion
from symbol addresses to arbitrary pointers.
By blocking on a timeout, we yield the CPU in order to give a
concurrently running sporadic process a chance to obtain ROM modules.
Otherwise, such requests would be deferred until the ROM prefetcher
completes its operation or in the unlikely event that the prefetcher
gets preempted.
Fixes#1378
The linker scripts use to fill alignment gaps within the text section
with the magic value 0x90909090, which correponds to the opcodes of four
nop instructions on x86. This patch removes this value because it
apparently solves no problem. If, for some reason (e.g., due to a dangling
pointer) a thread executes instructions within alignment paddings, NOP
instructions are not any better than any other instruction. The program
will eventually execute the instructions after the padding, which is
most likely fatal. It would be more reasonable to fill the padding with
the opcode of an illegal instruction so that such an error can be
immediately detected. That said, I cannot remember a single instance,
where the fill value has helped us during debugging.
Even if the mechanism served a purpose on x86, it is still better to
remove it because it does not equally work on the other architectures
where the linker scripts are used. I.e., on ARM, the opcode 0x90909090
is not a NOP instruction.
If newlines are in the string send to the core log service, they don't get
the label properly appended before each output. The messages then look like
they are coming from core.
Fixes#1368
Be less verbose regards warnings caused by vmx_invalid exits - which triggers
on T400 more often because it has no Unrestricted Guest support. This leads
to lot of log messages so that the test does not succeed in time. Additionally,
the virtualbox_auto_disk.run script is adjusted to check for some output to
exit earlier if something went wrong.
Fixes#1367
Workaround for issue #1343. By disabling the 'vpid' feature of the nova
kernel several VMs can be used concurrently. Applies for Seoul and VirtualBox.
Issue #1343
Instead of fixing the missing dynamic facilities of the AHCI driver
backends for x86 and Exynos5, just avoid to create/destroy the backend
for every new connection, but always use one and the same object.
The AHCI drivers need to be re-written anyway, see issue #1352 for instance,
we can make it more robust for the dynamic case then.
Fixes#786Fixes#1133
This has to be used during shared object creation and destruction because global
lists are manipulated. We cannot use the 'Elf_object::lock' here because there
may be jump-slot relocations during object initialization.
Fixes#1350
When building Genode for VEA9X4 as micro-hypervisor protected by the ARM
TrustZone hardware we ran into limitations regarding our basic daily
testing routines. The most significant is that, when speaking about RAM
partitioning, the only available options are to configure the whole SRAM
to be secure and the whole DDR-RAM to be non-secure or vice versa. The
SRAM however provides only 32 MB which isn't enough for both a
representative non-secure guest OS or a secure Genode that is still
capable of passing our basic tests. This initiated our decision to
remove the VEA9X4 TrustZone-support.
Fixes#1351
On VEA9X4-TZ, the context-area overlaps with the virtual area of the
text, data and bss. However, we can't simply change the link address as
the core image (used physically respectively 1:1 mapped) needs to be in
this particular RAM-region as it is the only one that can be protected
against a VM. Thus I've moved the context area to a place where it
shouldn't disturb any HW-platform.
Fixes#1337
Declaring the SP804 0/1 module and its interrupt to be non-secure prevents the
secure Genode from receiving the interrupt and hence the timer driver in the
secure Genode doesn't work.
Fixes#1340
The commit uses a fixed kernel branch (r8), which fixes a caching bug
observable in the Genode host. The quirk detecting the circumstance in the
timer service is obsolete now and is removed.
Fixes#1338
The commit
- fixes the syscall bindings for using portal permissions
- revokes PT_CTRL permission after pager in core set local badge name
- revokes PT_CTRL permission after server entrypoint code set local badge name
Fixes#1335
This fix configures TTBRs and translation-table descriptors as if we would use
SMP although we don't to circumvent problems with UP-configurations.
This fix should be superseded later by full SMP support for the VEA9X4.
ref #1312
The HW-kernel, in contrast to other kernels, provides a direct reference
to the pager object with the fault signal that is send to the pager
activation. When accessing this reference directly we may fall into the
time span where the root parent-entrypoint of the faulter has alredy
dissolved the pager object from the pager entrypoint, but not yet
silenced the according signal context. To avoid this we issue an
additional 'lookup_and_lock' with the received pager object. This isn't
optimal as we don't need the potentially cost-intensive lookup but only the
synchronization.
Fixes#1311.
Fixes#1332.
- essential support for 7260 chipset and DMA fixes
- assign mvm->pm_ops at beginning of function iwl_op_mode_mvm_start.
iwl_mvm_mac_setup_register() uses mvm->pm_ops, but it is called
before this field is set to a valid value.
- disable call to function iwl_mvm_prepare_multicast.
This function leads to a pagefault, as it aspects a list of multicast
addresses, but the list is empty as it is not generated by this port.
On base-hw, each thread owns exactly one scheduling context for its
whole lifetime. However, introducing helping on IPC, a thread might get
executed on scheduling contexts that it doesn't own. Figuratively
spoken, the IPC-helping relation spans trees between threads. These
trees are identical to those of the IPC relation between threads. The
root of such a tree is executed on all scheduling contexts in the tree.
All other threads in the tree are not executed on any scheduling context
as long as they remain in this position. Consequently, the ready-state
of all scheduling contexts in an IPC-helping tree always equals the
state of the root context.
fix#1102
As soon as helping is used, a thread may also be in a blocking state when its
scheduling context is ready. Hence, the state designation SCHEDULED for an active
thread would be pretty misleading.
ref #1102