The run tool now by default checks configurations with target-specific
XML schemata. Each component may define a config schema file in its
target.mk via the CONFIG_XSD variable. When the run tool has checked an
configuration of an init instance, it additionally goes through the
start nodes of the config. For each start node it checks whether there
is an XSD file that matches. If so, the run tool also checks the config
of the start node (if existant). This is done recursively. I.e., also
the child configs of a sub-init of a sub-init of the top-level init
receive a config check.
Issue #2600
If there is no debug/core-<kernel>.o library available, e.g., when
running a scenario in a fresh build directory where core is provided
via a depot package, the build_core_image step of the run tool was
canceled in the past, when trying to access the non-existing library.
This commit changes the semantic of build_core_image to link a core
binary with debug symbols only when the designated library is in place.
This fixup is related to issue #2339
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
In the image.elf file, the very last boot module is followed
by arbitrary other core-local data. Since those boot modules are
exported as page-granular dataspace to the outside of core via core's
ROM service, we need to ensure that the last page is padded with zeros.
This patch enables one to supply a list of arguments to
'install_config'. The arguments appear concatenated in the resulting
config file. This is useful for embedding dynamically generated content
into an otherwise static configuration. For example, in the following
config, the 'pkg' attribute of the '<query>' config node is defined by
the return value of the 'query_pkg' function:
install_config {
<config>
...
<start name="depot_query">
...
<config>
<query pkg="genodelabs/pkg/} [query_pkg] {"/>
</config>
</start>
</config>}
We do not have debug symbols in the bin/ binaries anymore. Thus, use the
debug/ binaries instead. We now have kernel specific binary names for
ld.lib.so and some others. Adapt, to this fact as well. For doing so
without unnecessary output, provide a new parameter "silent" at the
"kernel_specific_binary" procedure.
Ref #2398
Previously, the debugging version of the core image
(<build_dir>/var/run/<run_name>.core) was created by the run tool from
the common core object file
(<build_dir>/var/run/<run_name>/core-<kernel>.o). This object file,
however, was already stripped by the build system and thus didn't
contain debug info anymore. The build system also creates an unstripped
version in <build_dir>/debug/core-<kernel>.o, so we now use this one
for <build_dir>/var/run/<run_name>.core.
Ref #2254
This way, files copied from the depot are incorporated in addition to
the files explicitly specified as boot modules.
The patch also adds an automatic check for the validity of the XML
syntax of boot modules ending with '.config'.
Issue #2339
Run scripts can use the new 'import_from_depot' function to incorporate
archive content from the depot into a scenario. The function must be
called after the 'create_boot_directory' function and takes any number
of pkg, src, or raw archives as arguments. An archive is specified as
depot-relative path of the form <user>/<type>/name. Run scripts may
call 'import_from_depot' repeatedly.
An argument can refer to a specific version of an archive or just the
version-less archive name. In the latter case, the current version (as
defined by a corresponding archive recipe in the source tree) is used.
If a 'src' archive is specified, the run tool integrates the content of
the corrsponding binary archive into the scenario. The binary archives
are selected according the spec values as defined for the build directory.
As of now, only x86_32 and x86_64 are supported by the 'depot_spec'
function.
Issue #2339
By installing the core object to bin/, we follow the same convention as
for regular binaries. This, in turn, enables us to ship core in a
regular binary archive. The patch also adjusts the run tool to pick up
the core object from bin/ for the final linking stage.
This enables to use append_if like the append command in the following
situation.
proc optional_binary {} {...}
append_if $optional config {
<start name="} [optional_binary] {">
...
}
Instead of implicitly asking for core's link address when linking
core within the run tool, deliver it explicitly to the build_core
routine. Thereby we gain the freedom to use the build_core tool for
different targets like core, and bootstrap.
Ref #2092
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.
Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.
As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.
This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
On each execution the output buffer is overriden when run_genode_until
is executed multiple times. Run scripts, that depend on extracting
information after several execution steps, e.g. noux_net_netcat, will
fail to do so. Therefore, we append the newly captured log output to
the old output buffer.
Issue #1327.
and move it close to run_genode_until implementation.
Somehow the "match_max -d" gets ignored if it is to far away and some
our run scripts fails because the buffer contains not all information
(seen for affinity.run on a 8 core machine)