The former 'Genode::Timed_semaphore' mechanism is moved to the private
part of the two remaining users, namely dde_rump and the libc. Note
there are now two private copies of 'timed_semaphore.h'. This should be
regarded as an interim step until the use of this mechanism is removed
from both users.
This patch also cleans up the mechanism from legacy Genode API calls and
global side effects (alarm-thread singleton). The test/timed_semaphore
is now located at the libports repository as it now tests a mechanism of
the libc. The former timed_semaphore library is no more.
Fixes#3121
'SANITIZE_UNDEFINED = yes' in 'target.mk' adds the '-fsanitize=undefined'
compiler flag and links the program with libubsan and libsanitizer_common.
Issue #3072
The Ada runtime can now be set with the ADA_RTS variable. The ada
library builds a (currently) minimal runtime from the gcc sources that
come with Genode (to stay consistent with the used compiler) and sets
the runtime path accordingly. It is build as a shared library ada.lib.so
which needs to be added to the build files.
I split the existing Ada test into program and library, and moved it
to libports as it depends on the runtime library residing in this
repository too.
Fixes#2748
This patch enables the warnings -Wextra, -Weffc++, and -Werror for
compiling Genode components. It thereby helps us to detect bugs like
uninitialized member variables or missing virtual destructors at compile
time. The warning level is defined via the new 'CC_CXX_WARN_STRICT'
variable. For targets that compile 3rd-party code where this warning
level is not applicable, the variable may be explictly set to an empty
value in the corresponding build-description file.
Issue #465
The run tool now by default checks configurations with target-specific
XML schemata. Each component may define a config schema file in its
target.mk via the CONFIG_XSD variable. When the run tool has checked an
configuration of an init instance, it additionally goes through the
start nodes of the config. For each start node it checks whether there
is an XSD file that matches. If so, the run tool also checks the config
of the start node (if existant). This is done recursively. I.e., also
the child configs of a sub-init of a sub-init of the top-level init
receive a config check.
Issue #2600
* Instead of always re-load page-tables when a thread context is switched
only do this when another user PD's thread is the next target,
core-threads are always executed within the last PD's page-table set
* remove the concept of the mode transition
* instead map the exception vector once in bootstrap code into kernel's
memory segment
* when a new page directory is constructed for a user PD, copy over the
top-level kernel segment entries on RISCV and X86, on ARM we use a designated
page directory register for the kernel segment
* transfer the current CPU id from bootstrap to core/kernel in a register
to ease first stack address calculation
* align cpu context member of threads and vms, because of x86 constraints
regarding the stack-pointer loading
* introduce Align_at template for members with alignment constraints
* let the x86 hardware do part of the context saving in ISS, by passing
the thread context into the TSS before leaving to user-land
* use one exception vector for all ARM platforms including Arm_v6
Fix#2091
* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
We moved the stack-area segment 128 MiB behind text and data to comply
with assumptions in the kernel ELF loader.
This commit also reenables static binaries on linux and removes the
unused stack_area.stdlib.ld script.
Fixes#2521
- Fix fatal exception handling so that stack traces are dumped
- Add 'include/nim' directories to Nim module search path
- Enable release optimizations for release builds
Fix#2493
This is helpful for disabling messages in etc/tools.conf by
setting it to e.g.
MSG_LINK = @true ""
This results in much shorter and less cluttered logs in automatic
builds.
This patch sets the -march complile flag in spec/arm_v7a.mk, which
enables us to build depot archives for the 'arm_v7a' architecture.
It also removes copy-pasted comments that offer no valuable insights but
contain grammar errors.
Originally, the spec files for less specific SPEC values were include
via the 'select_from_repositories' function. This implies that BASE_DIR
must always be present in the list of 'REPOSITORIES'. Otherwise the
spec files won't be found. By explicitly including sub specs from
'$(BASE_DIR)/mk', we lift this restriction.
The <build-dir>/bin/ directory used to contain symbolic links to the
unstripped build results. However, since the upcoming depot tool
extracts the content of binary archives from bin/, the resulting
archives would contain overly large unstripped binaries, which is
undesired. On the other hand, always stripping the build results is not
a good option either because we rely of symbol information during
debugging.
This patch changes the installation of build results such that a new
'debug/' directory is populated besides the existing 'bin/' directory.
The debug directory contains symbolic links to the unstripped build
results whereas the bin directory contains stripped binaries that are
palatable for packaging (depot tool) and for assembling boot images (run
tool).
The use of 'select_from_repositories' for locating the linker script for
dynamically-linked executables only works if 'BASE_DIR' appears in the
list of 'REPOSITORIES'. This is the case when using the build system in
the traditional way but it is not desired when building binary archives
of individual components.
This commit mostly removes the globally visible NR_OF_CPUS define
from the global makefile specifiers defined in the base-hw repository.
Whereever necessary it adds platform specific makefiles to the base
repository when they were missing.
Ref #2190
This patch make the ABI mechanism available to shared libraries other
than Genode's dynamic linker. It thereby allows us to introduce
intermediate ABIs at the granularity of shared libraries. This is useful
for slow-moving ABIs such as the libc's interface but it will also
become handy for the package management.
To implement the feature, the build system had to be streamlined a bit.
In particular, archive dependencies and shared-lib dependencies are now
handled separately, and the global list of 'SHARED_LIBS' is no more.
Now, the variable with the same name holds the per-target list of shared
libraries used by the target.
This patch removes the component_entry_point library, which used to
proved a hook for the libc to intercept the call of the
'Component::construct' function. The mechansim has several shortcomings
(see the discussion in the associated issue) and was complex. So we
eventually discarded the approach in favor of the explicit handling of
the startup.
A regular Genode component provides a 'Component::construct' function,
which is determined by the dynamic linker via a symbol lookup.
For the time being, the dynamic linker falls back to looking up a 'main'
function if no 'Component::construct' function could be found.
The libc provides an implementation of 'Component::construct', which
sets up the libc's task handling and finally call the function
'Libc::Component::construct' from the context of the appllication task.
This function is expected to be provided by the libc-using application.
Consequently, Genode components that use the libc have to implement the
'Libc::Component::construct' function.
The new 'posix' library provides an implementation of
'Libc::Component::construct' that calls a main function. Hence, POSIX
programs that merely use the POSIX API merely have to add 'posix' to the
'LIBS' declaration in their 'target.mk' file. Their execution starts at
'main'.
Issue #2199
This patch makes the benefit of the recently introduced unified Genode
ABI available to developers by enabling the use of multiple kernels from
within a single build directory. The create_builddir tool has gained a
new set of kernel-agnostic platform arguments such as x86_32, or panda.
Most build targets within directories are in principle compatible with
all kernels that support the selected hardware platform. To execute a
scenario via the run tool, one has to select the kernel to use by
setting the 'KERNEL' argument in the build configuration
(etc/build.conf). Alternatively, the 'KERNEL' can be specified as
command-line argument of the Genode build system, e.g.:
make run/log KERNEL=nova
This allows us to easily switch from one kernel to another without
rebuilding any Genode component except for the very few kernel-specific
ones.
The new version of the 'create_builddir' tool is still compatible with
the old version. The old kernel-specific build directories can still be
created. However, those variants will eventually be removed.
Note that the commit removes the 'ports-foc' repository from the
generated 'build.conf' files. As this is only meaningful for 'foc',
I did not want to include it in the list of regular repositories (as
visible in a 'x86_32' build directory). Hence, the repository must
now be manually added in order to use L4Linux.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
The linker scripts are known to reside in BASE_DIR. By using them
directly from this location instead of searching them in the
REPOSITORIES, we don't need to specify the repos/base as a repository in
order to link.
* Adds public timeout syscalls to kernel API
* Kernel::timeout installs a timeout and binds a signal context to it that
shall trigger once the timeout expired
* With Kernel::timeout_max_us, one can get the maximum installable timeout
* Kernel::timeout_age_us returns the time that has passed since the
calling threads last timeout installation
* Removes all device specific back-ends for the base-hw timer driver and
implements a generic back-end taht uses the kernel timeout API
* Adds assertions about the kernel timer frequency that originate from the
requirements of the the kernel timeout API and adjusts all timers
accordingly by using the their internal dividers
* Introduces the Kernel::Clock class. As member of each Kernel::Cpu object
it combines the management of the timer of the CPU with a timeout scheduler.
Not only the timeout API uses the timeout scheduler but also the CPUs job
scheduler for installing scheduling timeouts.
* Introduces the Kernel::time_t type for timer tic values and values inherited
from timer tics (like microseconds).
Fixes#1972
GNU ar only uses a flat module (object) name space but supports multiple
instances of objects with the same name. As we use subdirectories with
source file names that may clash (e.g., signal/common.cc and
server/common.cc in the base library) some of our static library
archives have multiple object instances. This is not an issue on archive
creation but works not as expected when updating archives. To avoid
updates of library archives we delete the files before calling GNU ar.
This is a generalisation approach of the hw_zynq target. As the boards
typically use UART1 instead of UART0 (used by qemu), we have to
distinguish between those. Moreover, in general hw_zynq does not imply
zynq_qemu anymore, so that the support of particular boards can be
placed in third-party or community repositories (e.g. Genode world).
Fixes#1926
This commit introduces the new `Component` interface in the form of the
headers base/component.h and base/entrypoint.h. The os/server.h API
has become merely a compatibilty wrapper and will eventually be removed.
The same holds true for os/signal_rpc_dispatcher.h. The mechanism has
moved to base/signal.h and is now called 'Signal_handler'.
Since the patch shuffles headers around, please do a 'make clean' in the
build directory.
Issue #1832
Rust relies on atomic builtins, which are not implemented in libgcc for
ARM. One is implemented in rust, which is sufficient to get the
current rust test to run.
Issue #1899
Previously, ports that were needed for a scenario and that were not
prepared or outdated, triggered one assertion each during the second
build stage. The commit slots a mechanism in ahead that gathers all
these ports during the first build stage and reports them in form of a
list before the second build stage is entered. This list can be used
directly as argument for tool/ports/prepare_port to prepare respectively
update the ports. If, however, this mechanism is not available, for
example because a target is build without the first build stage, the old
assertion still prevents the target from running into troubles with a
missing port.
Fixes#1872
Instead of holding SPEC-variable dependent files and directories inline
within the repository structure, move them into 'spec' subdirectories
at the corresponding levels, e.g.:
repos/base/include/spec
repos/base/mk/spec
repos/base/lib/mk/spec
repos/base/src/core/spec
...
Moreover, this commit removes the 'platform' directories. That term was
used in an overloaded sense. All SPEC-relative 'platform' directories are
now named 'spec'. Other files, like for instance those related to the
kernel/architecture specific startup library, where moved from 'platform'
directories to explicit, more meaningful places like e.g.: 'src/lib/startup'.
Fix#1673
We set 'ld -z max-page-size' to 4KiB to prevent the linker from aligning
the text segment to any built-in default (e.g., 4MiB on x86_64 or 64KiB
on ARM). Otherwise, the padding bytes are wasted at the beginning of the
final binary.
The port uses the Cortex-A9 private timer for the kernel and an EPIT as
user timer. It was successfully tested on the Wandboard Quad and the CuBox-i
with the signal test. It lacks L2-cache and Trustzone support by now.
Thanks to Praveen Srinivas (IIT Madras, India) and Nikolay Golikov (Ksys Labs
LLC, Russia). This work is partially based on their contributions.
Fix#1467
Drivers like SD-Card, platform, AHCI, and framebuffer are specified as Exynos5
compliant. But they are at least not compliant with Odroid-XU although this is
Exynos5. Thus, prevent tests that rely on such drivers when building for
hw_odoid_xu. Furthermore, make previous Arndale regulator/consts.h,
uart_defs.h, and some Board_base enums available to all Exynos5 builds to
enable at least building the drivers.
Fixes#1419
To enable the usage of virtualization extension related instructions
there is the need to enable the '-mcpu=cortex_a15' compiler flag on
those cpus. To not conflict with other compiler flags (Ref #810) we've
to disable the '-march=arm_v7a' flag.
Ref #1405
The memory barrier prevents the compiler from changing the program order
of memory accesses in such a way that accesses to the guarded resource
get outside the guarded stage. As cmpxchg() defines the start of the
guarded stage it also represents an effective memory barrier.
On x86, the architecture ensures to not reorder writes with older reads,
writes to memory with other writes (except in cases that are not
relevant for our locks), or read/write instructions with I/O
instructions, locked instructions, and serializing instructions.
However on ARM, the architectural memory model allows not only that
memory accesses take local effect in another order as their program
order but also that different observers (components that can access
memory like data-busses, TLBs and branch predictors) observe these
effects each in another order. Thus, a correct program order isn't
sufficient for a correct observation order. An additional architectural
preservation of the memory barrier is needed to achieve this.
Fixes#692
The new 'select_from_ports' function allows a target description file to
query the path to an installed port. All ports are stored in a central
location specified as CONTRIB_DIR. By default, CONTRIB_DIR is defined
as '<genode-dir>/contrib'. Ports of 3rd-party source code are managed
using the tools at '<genode-dir>/tool/ports/'.
Issue #1082
This patch changes the top-level directory layout as a preparatory
step for improving the tools for managing 3rd-party source codes.
The rationale is described in the issue referenced below.
Issue #1082