When constructing a thread object its capability is inserted into the
capability map. Normally this is done by the ipc-unmarshalling code, but
in this case the thread-capability isn't transfered via normal IPC, but in
a special form via the thread_state object. In contrast to the unmarshalling
code, the thread-startup code doesn't check, whether the capability-map
already contains a deprecated entry with the same capability id before
inserting the thread's capability. This commit add the necessary check.
Moreover, a check is added to the insertion methods of the capability-map
to verify that capability-allocation didn't failed.
Removing a Cap_index from Capability_map in core can happen twice, via
Cap_session_component or destructor of a Cap_mapping. That it's checked
whether the index is part of the map before removing it. This patch puts
the check into the remove method, so both operations are within the same
lock context, to remove a race condition.
This is a follow up fix for commit d287b9d893
By commit d287b9d893 the Native_capability
class changed fundamentally in the Fiasco.OC platform code of Genode. Thereby
the cap_integrity test got incompatible with it. This commit introduces a
separate test implementation for Fiasco.OC that does semantically the same
like the old test. Please refer to issue #161.
By using the `compare_output_to` method from the run tool instead of using
regexp in the cap_integrity run-script, the test outputs the undesired lines
instead of just signaling that the test failed.
In the compare_output_to function in the run tool a check was introduced,
whether the given arguments are empty, and if so if the output string is it
too. Without this patch compare_output_to succeeded when the given pattern
was empty but output wasn't. Please refer to issue #162.
This commit introduces a Cap_index class for Fiasco.OC's capabilities.
A Cap_index is a combination of the global capability id, that is used by Genode
to correctly identify a kernel-object, and a corresponding entry in a
protection-domain's (kernel-)capability-space. The cap-indices are non-copyable,
unique objects, that are held in a Cap_map. The Cap_map is used to re-find
capabilities already present in the protection-domain, when a capability is
received via IPC. The retrieval of capabilities effectively fixes issue #112,
meaning the waste of capability-space entries.
Because Cap_index objects are non-copyable (their address indicates the position
in the capability-space of the pd), they are inappropriate to use as
Native_capability. Therefore, Native_capability is implemented as a reference
to Cap_index objects. This design seems to be a good pre-condition to implement
smart-pointers for entries in the capability-space, and thereby closing existing
leaks (please refer to issue #32).
Cap_index, Cap_map, and the allocator for Cap_index objects are designed in a way,
that it should be relatively easy to apply the same concept to NOVA also. By now,
these classes are located in the `base-foc` repository, but they intentionally
contain no Fiasco.OC specific elements.
The previously explained changes had extensive impact on the whole Fiasco.OC
platform implementation, due to various dependencies. The following things had to
be changed:
* The Thread object's startup and destruction routine is re-arranged, to
enable another thread (that calls the Thread destructor) gaining the
capability id of the thread's gate to remove it from the Cap_map, the
thread's UTCB had to be made available to the caller, because there
is the current location of that id. After having the UTCB available
in the Thread object for that reason, the whole thread bootstrapping
could be simplified.
* In the course of changing the Native_capability's semantic, a new Cap_mapping
class was introduced in core, that facilitates the establishment and
destruction of capability mappings between core and it's client's, especially
mappings related to Platform_thread and Platform_task, that are relevant to
task and thread creation and destruction. Thereby, the destruction of
threads had to be reworked, which effectively removed a bug (issue #149)
where some threads weren't destroyed properly.
* In the quick fix for issue #112, something similar to the Cap_map was
introduced available in all processes. Moreover, some kind of a capability
map already existed in core, to handle cap-session request properly. The
introduction of the Cap_map unified both structures, so that the
cap-session component code in core had to be reworked too.
* The platform initialization code had to be changed sligthly due to the
changes in Native_capability
* The vcpu initialization in the L4Linux support library had to be adapted
according to the already mentioned changes in the Thread object's bootstrap
code.
This patch provides an implementation of the '_nanosleep()' libc function,
which blocks on a timed semaphore for the given time, but at least 10ms.
This should result in better performance than creating a timer connection
on every call (for thread-safety), but could still be improved.
Fixes#158.
There seems to be a bug in Fiasco.OC, that is hard to reproduce. The scenario
discussed in issue #157 triggers it relatively often. When sigma0 handles
pagefaults of core on demand at runtime, at some point its reply ipc-message
gets stucked in the kernel. This commit touches all ROM-modules when the
platform is initialized in advance (like it was done for RAM etc. already
before).
Use multiple load store instructions for 32 byte chunks in ARM-specific
blit-function, analog to x86 variant. Make the blit-function of x86 a
generic one, and provide needed utility functions for ARM and generic code.
Please refer issue #147 for discussion.
We cannot trust signal imprints received with signals to represent valid
pointers to signal contexts. After a signal context has been dissolved
from its receiver, a signal corresponding to the context might still be
in flight. Hence, we need a facility to check received signal imprints
against the list of valid contexts at reception time. The new
'Signal_context_registry' is a very simple attempt to create such a
facility.
Introduce a new Noncopyable class, one can derive from to mark a class of
objects to be uncopyable. This way the compiler can check for any violations
for you.
Both the libc and the NOVA syscall bindings provide the definition of
PAGE_SIZE. In contrast to the libc, which uses a #define, the NOVA
syscalls uses a proper enum value. Thus, we can work around the conflict
by including the NOVA syscalls header prior the libc header. Fixes#152.
This bug was introduced by commit c9c21ad39c, where Fiasco_capability
was removed, and enums defined in that class scope went to the namespace
Fiasco. In L4Linux some references to Fiasco_capability remained.
This commit unifies the policy name for the template argument for
Native_capability_tpl to Cap_dst_policy, like suggested by Norman in the
discussion resulting from issue #145. Moreover, it takes the memcpy
operation for copying a Native_capability out of the template, which is
included by a significant bunch of files, and separates it in a library,
analog to the suggestion in issue #145.
Because we use to pass a policy class to 'Native_capability_tpl'
we can pass the dst type as part of the policy instead of as
a separate template argument. This patch also adds documentation
of the POLICY interface as expected by 'Native_capability_tpl'.
This patch unifies the Native_capability classes for the different kernel
platforms by introducing an appropriate template, and eliminating naming
differences. Please refer issue #145.
To give the platform developer more freedom in how the Native_capability
class is internally implemented (e.g. turning it into a smart-pointer),
this patch removes the memcpy operation, when transfering the parent-capability
to a new process from the generic code, and let the implementation of the
platform-specific Native_capability decide how the transfer has to be done.
Please refer to issue #144.
Introduce a factory-, and dereference method for local capabilities. These are
capabilities that reference objects of services, which are known to be used
protection-domain internally only. To support the new Capability class methods
a protected constructor and accessor to the local object's pointer is needed
in the platform's capability base-classes. For further discussion details please
refer issue #139.
The 'log2()' and 'log2f()' functions have been added in FreeBSD's libc
version 9.0.0, but they are missing in version 8.2.0, which is used in
Genode. This patch provides preliminary implementations of these
functions until the Genode libc gets updated to version 9.0.0 or above.
Fixes#143.
When introducing an avl-tree to re-find known capabilities in Fiasco.OC
(issue #112), the memory demand of apllications was slightly increased.
So we've to give the pl11x driver more memory by default. Fixes#140.
Separate spin-lock implementation from lock-implementation and put it into a
non-public header, so it can be re-used by the DDE kit's and Fiasco.OC's
capability-allocator spin lock. Fixes issue #123.
The old variant provided 8K capability slots to all processes on core,
which increased binaries by 180 KB for the static allocator. I reduced it
to 4K capabilities stay under 100 KB overhead for the allocator.
Anyway, pci_drv and pl11x_drv need more RAM quota now: 2M for pl11x_drv
and 1M for pci_drv.