This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.
Issue #1832
By moving the stub implementation to rm_session_client.cc, we can use
the generic base/include/rm_session/client.h for base-linux and
base-nova and merely use platform-specific implementations.
Issue #1832
This patch establishes a common organization of header files
internal to the base framework. The internal headers are located at
'<repository>/src/include/base/internal/'. This structure has been
choosen to make the nature of those headers immediately clear when
included:
#include <base/internal/lock_helper.h>
Issue #1832
This patch integrates the functionality of the former CAP session into
the PD session and unifies the approch of supplementing the generic PD
session with kernel-specific functionality. The latter is achieved by
the new 'Native_pd' interface. The kernel-specific interface can be
obtained via the Pd_session::native_pd accessor function. The
kernel-specific interfaces are named Nova_native_pd, Foc_native_pd, and
Linux_native_pd.
The latter change allowed for to deduplication of the
pd_session_component code among the various base platforms.
To retain API compatibility, we keep the 'Cap_session' and
'Cap_connection' around. But those classes have become mere wrappers
around the PD session interface.
Issue #1841
This patch removes the SIGNAL service from core and moves its
functionality to the PD session. Furthermore, it unifies the PD service
implementation and terminology across the various base platforms.
Issue #1841
This commit enables multi-processing for all Cortex A9 SoCs we currently
support. Moreover, it thereby enables the L2 cache for i.MX6 that was not
enabled until now. However, the QEMU variants hw_pbxa9 and hw_zynq still
only use 1 core, because the busy cpu synchronization used when initializing
multiple Cortex A9 cores leads to horrible boot times on QEMU.
During this work the CPU initialization in general was reworked. From now
on lots of hardware specifics were put into the 'spec' specific files, some
generic hook functions and abstractions thereby were eliminated. This
results to more lean implementations for instance on non-SMP platforms,
or in the x86 case where cache maintainance is a non-issue.
Due to the fact that memory/cache coherency and SMP are closely coupled
on ARM Cortex A9 this commit combines so different aspects.
Fix#1312Fix#1807
When unblocking a thread in Semaphore::up() while holding the fifo meta-data
lock, it might happen that the lock holder gets destroyed by the one it was
unblocking. This happened for instance in the pthread test in the past, where
thread destruction was synchronized via a semaphore. There is no need to hold
the lock during the unblock operation, so we should do it outside the critical
section.
Fix#1333
Previously we used a pretty slow external clock source for the timer. This
resulted in such a low TICS_PER_MS value that the granularity wasn't
sufficient to find a setup with a precision better than 1 second error per
minute. Now we use the so-called High Frequency Reference Clock as input
with TICS_PER_MS=33333 and the timer precision is significantly < 1 second per
minute.
Fixes#1805
'block_for_signal' and 'pending_signal' now set pending flag in signal context
in order to determine pending signal. The context list is also used by the
'Signal_receiver' during destruction.
Fixes#1738
Currently, when a signal arrives in the main thread, the signal dispatcher is
retrieved and called from the main thread, the dispatcher uses a proxy object
that in turn sends an RPC to the entry point. This becomes a problem when the
entry point destroys the dispatcher object, before the dispatch function has
been called by the main thread. Therefore, the main thread should simply send an
RPC to the entry point upon signal arrival and the dispatching should be handled
solely by the entry point.
Issue #1738
Holding the object pool's lock while trying to obtain an object's lock
can leave to dead-lock situations, when more than one thread tries to
access multiple objects at once (e.g.: when transfer_quota gets called
simultanously by the init and entrypoint thread in core). To circumvent
holding the object pool lock too long, but access object pointers safely
on the other hand, this commit updates the object pool implementation
to use weak pointers during the object retrieval.
Fix#1704
* Move the Synced_interface from os -> base
* Align the naming of "synchronized" helpers to "Synced_*"
* Move Synced_range_allocator to core's private headers
* Remove the raw() and lock() members from Synced_allocator and
Synced_range_allocator, and re-use the Synced_interface for them
* Make core's Mapped_mem_allocator a friend class of Synced_range_allocator
to enable the needed "unsafe" access of its physical and virtual allocators
Fix#1697
Instead of holding SPEC-variable dependent files and directories inline
within the repository structure, move them into 'spec' subdirectories
at the corresponding levels, e.g.:
repos/base/include/spec
repos/base/mk/spec
repos/base/lib/mk/spec
repos/base/src/core/spec
...
Moreover, this commit removes the 'platform' directories. That term was
used in an overloaded sense. All SPEC-relative 'platform' directories are
now named 'spec'. Other files, like for instance those related to the
kernel/architecture specific startup library, where moved from 'platform'
directories to explicit, more meaningful places like e.g.: 'src/lib/startup'.
Fix#1673
Instead of returning pointers to locked objects via a lookup function,
the new object pool implementation restricts object access to
functors resp. lambda expressions that are applied to the objects
within the pool itself.
Fix#884Fix#1658
Moves the Bios Data Area header from base-hw to base. Modifies the
base-nova core console that it uses the header as replacement for
the previous BDA bit logic.
Ref #1625
This commit eliminates the mutual interlaced taking of destruction lock,
list lock and weak pointer locks that could lead to a dead-lock situation
when a lock pointer was tried to construct while a weak object is in
destruction progress.
Now, all weak pointers are invalidated and dequeued at the very
beginning of the weak object's destruction. Moreover, before a weak pointer
gets invalidated during destruction of a weak object, it gets dequeued, and
the list lock is freed again to avoid the former dead-lock.
Fix#1607
Up to now it was not possible to trace threads that use a different
Cpu_session rather than env()->cpu_session() (as done by VirtualBox).
This problem is now solved by setting the Cpu_session explicitly when
creating the event logger and attaching the trace control area when
creating the thread.
Fixes#1618.
The recent change of the TRACE session interface triggered the
following warning:
/home/no/src/genode/repos/base/include/base/ipc.h:79:4: warning: ‘ret’ may be used uninitialized in this function [-Wmaybe-uninitialized]
*reinterpret_cast<T *>(&_sndbuf[_write_offset]) = value;
^
In file included from /home/no/src/genode/repos/base/src/core/include/trace/session_component.h:19:0,
from /home/no/src/genode/repos/base/src/core/trace_session_component.cc:15:
/home/no/src/genode/repos/base/include/base/rpc_server.h:132:42: note: ‘ret’ was declared here
typename This_rpc_function::Ret_type ret;
The warning occurs for basic return types (like size_t), which are
indeed not initialized. The variable gets its value assigned by the
corresponding 'call_member' overload, to which the variable is passed as
reference. But the compiler apparently is not able to detect this assignment.
Declaring 'ret' with a C++11-style default initializer fixes the warning.
While importing trace sources as trace subjects into a TRACE session,
the session quota might become depleted. The TRACE session already keeps
track of the session quota via an allocator guard but the 'subjects' RPC
function missed to handle the out-of-memory condition. This patch
reflects the error condition as an 'Out_of_metadata' exception to the
TRACE client. It also contains an extension of the trace test to
exercise the corner case.
This patch enable clients of core's TRACE service to obtain the
execution times of trace subjects (i.e., threads). The execution time is
delivered as part of the 'Subject_info' structure.
Right now, the feature is available solely on NOVA. On all other base
platforms, the returned execution times are 0.
Issue #813