Drivers like SD-Card, platform, AHCI, and framebuffer are specified as Exynos5
compliant. But they are at least not compliant with Odroid-XU although this is
Exynos5. Thus, prevent tests that rely on such drivers when building for
hw_odoid_xu. Furthermore, make previous Arndale regulator/consts.h,
uart_defs.h, and some Board_base enums available to all Exynos5 builds to
enable at least building the drivers.
Fixes#1419
For the USB-Armory, we use a newer version of Linux (3.18) as for the
i.MX53-QSB. The main difference is, that the newer Linux uses a DTB instead of
ATAGs.
Fixes#1422
The USB Armory is almost the same as the i.MX53-QSB but it uses only
one of the two RAM banks available in i.MX53. Furthermore we use the USB
Armory only with Trustzone enabled.
Ref #1422
* enables world-switch using ARM virtualization extensions
* split TrustZone and virtualization extensions hardly from platforms,
where it is not used
* extend 'Vm_session' interface to enable configuration of guest-physical memory
* introduce VM destruction syscall
* add virtual machine monitor for hw_arndale that emulates a simplified version
of ARM's Versatile Express Cortex A15 board for a Linux guest OS
Fixes#1405
The handling of MMIO regions now supports more pathological cases with
weird cross references. Also, MMIO regions are releases after the
parsing is done.
Fixes#998
When returning early on directory operations, file systems that might
be able to handle the request but come after the current one are not
tried.
Fixes#1400.
Instead of returning an uint64_t value, return a structured time stamp.
This change is only visible to components using Rtc_session directly.
Fixes#1381.
By blocking on a timeout, we yield the CPU in order to give a
concurrently running sporadic process a chance to obtain ROM modules.
Otherwise, such requests would be deferred until the ROM prefetcher
completes its operation or in the unlikely event that the prefetcher
gets preempted.
Fixes#1378
Instead of fixing the missing dynamic facilities of the AHCI driver
backends for x86 and Exynos5, just avoid to create/destroy the backend
for every new connection, but always use one and the same object.
The AHCI drivers need to be re-written anyway, see issue #1352 for instance,
we can make it more robust for the dynamic case then.
Fixes#786Fixes#1133
When building Genode for VEA9X4 as micro-hypervisor protected by the ARM
TrustZone hardware we ran into limitations regarding our basic daily
testing routines. The most significant is that, when speaking about RAM
partitioning, the only available options are to configure the whole SRAM
to be secure and the whole DDR-RAM to be non-secure or vice versa. The
SRAM however provides only 32 MB which isn't enough for both a
representative non-secure guest OS or a secure Genode that is still
capable of passing our basic tests. This initiated our decision to
remove the VEA9X4 TrustZone-support.
Fixes#1351
Declaring the SP804 0/1 module and its interrupt to be non-secure prevents the
secure Genode from receiving the interrupt and hence the timer driver in the
secure Genode doesn't work.
Fixes#1340
The commit uses a fixed kernel branch (r8), which fixes a caching bug
observable in the Genode host. The quirk detecting the circumstance in the
timer service is obsolete now and is removed.
Fixes#1338
In the init configuration one can configure the donation of CPU time via
'resource' tags that have the attribute 'name' set to "CPU" and the
attribute 'quantum' set to the percentage of CPU quota that init shall
donate. The pattern is the same as when donating RAM quota.
! <start name="test">
! <resource name="CPU" quantum="75"/>
! </start>
This would cause init to try donating 75% of its CPU quota to the child
"test". Init and core do not preserve CPU quota for their own
requirements by default as it is done with RAM quota.
The CPU quota that a process owns can be applied through the thread
constructor. The constructor has been enhanced by an argument that
indicates the percentage of the programs CPU quota that shall be granted
to the new thread. So 'Thread(33, "test")' would cause the backing CPU
session to try to grant 33% of the programs CPU quota to the thread
"test". By now, the CPU quota of a thread can't be altered after
construction. Constructing a thread with CPU quota 0 doesn't mean the
thread gets never scheduled but that the thread has no guaranty to receive
CPU time. Such threads have to live with excess CPU time.
Threads that already existed in the official repositories of Genode were
adapted in the way that they receive a quota of 0.
This commit also provides a run test 'cpu_quota' in base-hw (the only
kernel that applies the CPU-quota scheme currently). The test basically
runs three threads with different physical CPU quota. The threads simply
count for 30 seconds each and the test then checks wether the counter
values relate to the CPU-quota distribution.
fix#1275
The way this function is currently used in dde_linux expects this
function to return. Since there is dde_kit_panic it should better
be used in such a case the output should block.
This patch ensures that priority values passed as session arguments
are within the valid range of priorities. Without the clamping, a child
could specify a priority of a lower priority band than the one assigned
to the subsystem. Thanks to Johannes Schlatow for reporting this issue.
Fixes#1279
The alias is rather Linux-specific and also prevents particularly
tailored jiffies implementations. For the existing dde_linux ports (usb
and lxip) we just define jiffies to be dde_kit_timer_ticks with a
preprocessor macro.
The new 'session_control' function can be used to perform operations on
the global view stack that span one or multiple sessions, e.g., bringing
all views of specific sessions to the front, or hiding them.