Instead of storing whether the first item in the timeout list was already
programmed using the timer service, just program the first timeout in the
list unconditionally. In the past we lost a timeout at least when using the
usb ethernet driver on hw/arndale sporadically.
Linux does not do that in register_netdev() either. Some drivers set the
carrier flags on attach and never reenable it (as seen with rndis_host).
Consequently, the usbnet driver refuses to receive data as it checks the
carrier state before enqueuing new SKBs to its receive queue.
Apart from rndis_host, this change was tested with an ax88179_178a
device which worked as expected.
Until now the client called the Linux code directly through the EP
when sending ethernet frames and was not part of the driver's internal
task scheduling. This will lead to problems if the sending code needs
to grab a lock as those depend on running from within a Lx::Task.
Although this has only happend recently when using 8260 devices, this
is an issue that needs to be fix.
This commit addresses the issue by using a dedicated transmit task
in whose context the Linux code sends the ethernet frame or rather
newly allocated skb.
Fixes#2559.
Remove getaddrinfo and freeaddrinfo from the Libc::Plugin and get rid of
the extra libc_resolv library. Remove getaddrinfo/freeaddrinfo symbol
hiding patch for FreeBSD sources. Remove libc_resolv from Makefiles and
run scenarios.
Fix#2273
Linux del_timer() and mod_timer() return if the timer was pending before
the modification. Additionally, these functions are potentially called
from handler function of the timer to modify and, therefore, checking
for timeout != INVALID_TIMEOUT is not sufficient as the timeout is
indeed valid when the handler is executed.
Add a "writeable" policy option to the ahci_drv and part_blk Block
servers and default from writeable to ready-only. Should a policy
permit write acesss the session request argument "writeable" may still
downgrade a session to ready-only.
Fix#2469
The VFS library can be used in single-threaded or multi-threaded
environments and depending on that, signals are handled by the same thread
which uses the VFS library or possibly by a different thread. If a VFS
plugin needs to block to wait for a signal, there is currently no way
which works reliably in both environments.
For this reason, this commit makes the interface of the VFS library
nonblocking, similar to the File_system session interface.
The most important changes are:
- Directories are created and opened with the 'opendir()' function and the
directory entries are read with the recently introduced 'queue_read()'
and 'complete_read()' functions.
- Symbolic links are created and opened with the 'openlink()' function and
the link target is read with the 'queue_read()' and 'complete_read()'
functions and written with the 'write()' function.
- The 'write()' function does not wait for signals anymore. This can have
the effect that data written by a VFS library user has not been
processed by a file system server yet when the library user asks for the
size of the file or closes it (both done with RPC functions at the file
system server). For this reason, a user of the VFS library should
request synchronization before calling 'stat()' or 'close()'. To make
sure that a file system server has processed all write request packets
which a client submitted before the synchronization request,
synchronization is now requested at the file system server with a
synchronization packet instead of an RPC function. Because of this
change, the synchronization interface of the VFS library is now split
into 'queue_sync()' and 'complete_sync()' functions.
Fixes#2399
We used a hardware timer locally in the RPI USB driver because a timer
connection was not precise enough to fullfill the host controllers
requirements.
With the modern timer connection interface, however, reading out time at
a connection is microseconds precise and we can remove the local timer.
But we cannot use the same timer connection for doing legacy-interface
stuff like usleep (currently used in LX kit) and modern-interface stuff
like curr_time. Thus, we open two connections for now.
Ref #2400
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch replaces the 'Parent::Quota_exceeded',
'Service::Quota_exceeded', and 'Root::Quota_exceeded' exceptions
by the single 'Insufficient_ram_quota' exception type.
Furthermore, the 'Parent' interface distinguished now between
'Out_of_ram' (the child's RAM is exhausted) from
'Insufficient_ram_quota' (the child's RAM donation does not suffice to
establish the session).
This eliminates ambiguities and removes the need to convert exception
types along the path of the session creation.
Issue #2398
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403