With the update to L4ka::Pistachio, we no longer need to patch the
contrib sources. Our patch went upstream in the meanwhile.
Apparently, gcc-4.7 is picky about specifying the '-melf_i386' argument
at the command line of the GCC frontend. We need to make sure to use the
'-Wl,' prefix.
By now all services in core where created, and registered in the generic
main routine. Although there exists already a x86-specific service (I/O ports)
there was no possibility to announce core-services for certain platforms only.
This commit introduces a hook function in the 'Platform' class, that enables
registration of platform-specific services. Moreover, the io-port service
is offered on x86 platforms only now.
This patch introduces the functions 'affinity' and 'num_cpus' to the CPU
session interface. The interface extension will allow the assignment of
individual threads to CPUs. At this point, it is just a stub with no
actual platform support.
The CML2 configuration system calls 'evn python' and expects version
2.x. So we check if python2 is installed when preparing Pistachio and
use the found version instead.
Fixes#264.
The 'copy_to' function turned out to be not flexible enough to
accommodate the Noux fork mechanism. This patch removes the function,
adds an accessor for the capability destination and a compound type
'Native_capability::Raw' to be used wherever plain capability
information must be communicated.
This commit unifies the policy name for the template argument for
Native_capability_tpl to Cap_dst_policy, like suggested by Norman in the
discussion resulting from issue #145. Moreover, it takes the memcpy
operation for copying a Native_capability out of the template, which is
included by a significant bunch of files, and separates it in a library,
analog to the suggestion in issue #145.
Because we use to pass a policy class to 'Native_capability_tpl'
we can pass the dst type as part of the policy instead of as
a separate template argument. This patch also adds documentation
of the POLICY interface as expected by 'Native_capability_tpl'.
This patch unifies the Native_capability classes for the different kernel
platforms by introducing an appropriate template, and eliminating naming
differences. Please refer issue #145.
To give the platform developer more freedom in how the Native_capability
class is internally implemented (e.g. turning it into a smart-pointer),
this patch removes the memcpy operation, when transfering the parent-capability
to a new process from the generic code, and let the implementation of the
platform-specific Native_capability decide how the transfer has to be done.
Please refer to issue #144.
Introduce a factory-, and dereference method for local capabilities. These are
capabilities that reference objects of services, which are known to be used
protection-domain internally only. To support the new Capability class methods
a protected constructor and accessor to the local object's pointer is needed
in the platform's capability base-classes. For further discussion details please
refer issue #139.
The kernel distinguishes local from global IDs by looking at the lowest
6 bits of the thread ID (i.e., in 'L4_ThreadControl'). If those bits are
zero, the ID is interpreted as a local ID. Because those zero bits
overlap with the version bits of global IDs, this invariant could be
violated once the version of a global ID reaches 64. In this case,
'L4_ThreadControl' will return an error on the attempt to create a new
PD. To prevent this from happening, we always set the lowest bit to 1.