* introduces central memory map for core/kernel
* on 32-bit platforms the kernel/core starts at 0x80000000
* on 64-bit platforms the kernel/core starts at 0xffffffc000000000
* mark kernel/core mappings as global ones (tagged TLB)
* move the exception vector to begin of core's binary,
thereby bootstrap knows from where to map it appropriately
* do not map boot modules into core anymore
* constrain core's virtual heap memory area
* differentiate in between user's and core's main thread's UTCB,
which now resides inside the kernel segment
Ref #2091
When running core as the kernel inside every component, a separate
stack area for core is needed that is different from the user-land
component's one.
Ref #2091
For most base platforms (except linux and sel4), the initialization of
boot modules is the same. Thus, merge this default implementation in the
new unit base/src/core/platform_rom_modules.cc.
Ref #2490
- factor out Rm_client::pager lambda code into utility
Region_map_component::create_map_item
- use utility to find/lookup physical addresses to be mapped eagerly
Issue #2209
The recently implemented capability resource trading scheme unfortunately
broke the automated capability memory upgrade mechanism needed by base-hw
kernel/core. This commit splits the capability memory upgrade mechanism
from the PD session ram_quota upgrade, and moves that functionality
into a separate Pd_session::Native_pd interface.
Ref #2398
By supplying a statically allocated initial block to the slab allocator
for signal contexts, we become able to construct a 'Signal_broker' (the
back end for the PD's signalling API) without any dynamic memory
allocation. This is a precondition for using the PD as meta-data
allocator for its contained signal broker (meta data allocations must
not happen before the PD construction is complete).
Issue #2407
By separating the session-interface concerns from the mechanics of the
dataspace creation, the code becomes simpler to follow, and the RAM
session can be more easily merged with the PD session in a subsequent
step.
Issue #2407
This patch allows core's 'Signal_transmitter' implementation to sidestep
the 'Env::Pd' interface and thereby adhere to a stricter layering within
core. The 'Signal_transmitter' now uses - on kernels that depend on it -
a dedicated (and fairly freestanding) RPC proxy mechanism for signal
deliver, instead of channeling signals through the 'Pd_session::submit'
RPC function.
Previously, the Genode::Timer::curr_time always used the
Timer_session::elapsed_ms RPC as back end. Now, Genode::Timer reads
this remote time only in a periodic fashion independently from the calls
to Genode::Timer::curr_time. If now one calls Genode::Timer::curr_time,
the function takes the last read remote time value and adapts it using
the timestamp difference since the remote-time read. The conversion
factor from timestamps to time is estimated on every remote-time read
using the last read remote-time value and the timestamp difference since
the last remote time read.
This commit also re-works the timeout test. The test now has two stages.
In the first stage, it tests fast polling of the
Genode::Timer::curr_time. This stage checks the error between locally
interpolated and timer-driver time as well as wether the locally
interpolated time is monotone and sufficiently homogeneous. In the
second stage several periodic and one-shot timeouts are scheduled at
once. This stage checks if the timeouts trigger sufficiently precise.
This commit adds the new Kernel::time syscall to base-hw. The syscall is
solely used by the Genode::Timer on base-hw as substitute for the
timestamp. This is because on ARM, the timestamp function uses the ARM
performance counter that stops counting when the WFI (wait for
interrupt) instruction is active. This instruction, however is used by
the base-hw idle contexts that get active when no user thread needs to
be scheduled. Thus, the ARM performance counter is not a good choice for
time interpolation and we use the kernel internal time instead.
With this commit, the timeout library becomes a basic library. That means
that it is linked against the LDSO which then provides it to the program it
serves. Furthermore, you can't use the timeout library anymore without the
LDSO because through the kernel-dependent LDSO make-files we can achieve a
kernel-dependent timeout implementation.
This commit introduces a structured Duration type that shall successively
replace the use of Microseconds, Milliseconds, and integer types for duration
values.
Open issues:
* The timeout test fails on Raspberry PI because of precision errors in the
first stage. However, this does not render the framework unusable in general
on the RPI but merely is an issue when speaking of microseconds precision.
* If we run on ARM with another Kernel than HW the timestamp speed may
continuously vary from almost 0 up to CPU speed. The Timer, however,
only uses interpolation if the timestamp speed remained stable (12.5%
tolerance) for at least 3 observation periods. Currently, one period is
100ms, so its 300ms. As long as this is not the case,
Timer_session::elapsed_ms is called instead.
Anyway, it might happen that the CPU load was stable for some time so
interpolation becomes active and now the timestamp speed drops. In the
worst case, we would now have 100ms of slowed down time. The bad thing
about it would be, that this also affects the timeout of the period.
Thus, it might "freeze" the local time for more than 100ms.
On the other hand, if the timestamp speed suddenly raises after some
stable time, interpolated time can get too fast. This would shorten the
period but nonetheless may result in drifting away into the far future.
Now we would have the problem that we can't deliver the real time
anymore until it has caught up because the output of Timer::curr_time
shall be monotone. So, effectively local time might "freeze" again for
more than 100ms.
It would be a solution to not use the Trace::timestamp on ARM w/o HW but
a function whose return value causes the Timer to never use
interpolation because of its stability policy.
Fixes#2400
This patch reduces the number of exception types by facilitating
globally defined exceptions for common usage patterns shared by most
services. In particular, RPC functions that demand a session-resource
upgrade not longer reflect this condition via a session-specific
exception but via the 'Out_of_ram' or 'Out_of_caps' types.
Furthermore, the 'Parent::Service_denied', 'Parent::Unavailable',
'Root::Invalid_args', 'Root::Unavailable', 'Service::Invalid_args',
'Service::Unavailable', and 'Local_service::Factory::Denied' types have
been replaced by the single 'Service_denied' exception type defined in
'session/session.h'.
This consolidation eases the error handling (there are fewer exceptions
to handle), alleviates the need to convert exceptions along the
session-creation call chain, and avoids possible aliasing problems
(catching the wrong type with the same name but living in a different
scope).
This patch mirrors the accounting and trading scheme that Genode employs
for physical memory to the accounting of capability allocations.
Capability quotas must now be explicitly assigned to subsystems by
specifying a 'caps=<amount>' attribute to init's start nodes.
Analogously to RAM quotas, cap quotas can be traded between clients and
servers as part of the session protocol. The capability budget of each
component is maintained by the component's corresponding PD session at
core.
At the current stage, the accounting is applied to RPC capabilities,
signal-context capabilities, and dataspace capabilities. Capabilities
that are dynamically allocated via core's CPU and TRACE service are not
yet covered. Also, the capabilities allocated by resource multiplexers
outside of core (like nitpicker) must be accounted by the respective
servers, which is not covered yet.
If a component runs out of capabilities, core's PD service prints a
warning to the log. To observe the consumption of capabilities per
component in detail, the PD service is equipped with a diagnostic
mode, which can be enabled via the 'diag' attribute in the target
node of init's routing rules. E.g., the following route enables the
diagnostic mode for the PD session of the "timer" component:
<default-route>
<service name="PD" unscoped_label="timer">
<parent diag="yes"/>
</service>
...
</default-route>
For subsystems based on a sub-init instance, init can be configured
to report the capability-quota information of its subsystems by
adding the attribute 'child_caps="yes"' to init's '<report>'
config node. Init's own capability quota can be reported by adding
the attribute 'init_caps="yes"'.
Fixes#2398
This patch reworks the implementation of core's RAM service to make use
of the 'Session_object' and to remove the distinction between the
"metadata" quota and the managed RAM quota. With the new implementation,
the session implicitly allocates its metadata from its own account. So
there is not need to handle 'Out_of_metadata' and 'Quota_exceeded' via
different exceptions. Instead, the new version solely uses the
'Out_of_ram' exception.
Furthermore, the 'Allocator::Out_of_memory' exception has become an alias
for 'Out_of_ram', which simplifies the error handling.
Issue #2398
This patch adds sanity checks to the RPC entrypoint that detect attempts
to manage or dissolve the same RPC object twice. This is not always a
bug. I.e., if RPC objects are implemented in the modern way where the
object manages/dissolves itself. As the generic framework code (in
particular root/component.h) cannot rely on this pattern, it has to
call manage/dissolve for session objects anyway. For modern session
objects, this double attempt would result in a serious error (double
insertion into the object pool's AVL tree).
Issue #2398
This commit moves the headers residing in `repos/base/include/spec/*/drivers`
to `repos/base/include/drivers/defs` or repos/base/include/drivers/uart`
respectively. The first one contains definitions about board-specific MMIO
iand RAM addresses, or IRQ lines. While the latter contains device driver
code for UART devices. Those definitions are used by driver implementations
in `repos/base-hw`, `repos/os`, and `repos/dde-linux`, which now need to
include them more explicitely.
This work is a step in the direction of reducing 'SPEC' identifiers overall.
Ref #2403
By installing the core object to bin/, we follow the same convention as
for regular binaries. This, in turn, enables us to ship core in a
regular binary archive. The patch also adjusts the run tool to pick up
the core object from bin/ for the final linking stage.
This commit enables compile-time warnings displayed whenever a deprecated
API header is included, and adjusts the existing #include directives
accordingly.
Issue #1987
This patch enables warnings if one of the deprecate functions that rely
in the implicit use of the global Genode::env() accessor are called.
For the time being, some places within the base framework continue
to rely on the global function while omitting the warning by calling
'env_deprecated' instead of 'env'.
Issue #1987
This patch make the ABI mechanism available to shared libraries other
than Genode's dynamic linker. It thereby allows us to introduce
intermediate ABIs at the granularity of shared libraries. This is useful
for slow-moving ABIs such as the libc's interface but it will also
become handy for the package management.
To implement the feature, the build system had to be streamlined a bit.
In particular, archive dependencies and shared-lib dependencies are now
handled separately, and the global list of 'SHARED_LIBS' is no more.
Now, the variable with the same name holds the per-target list of shared
libraries used by the target.
This patch makes the benefit of the recently introduced unified Genode
ABI available to developers by enabling the use of multiple kernels from
within a single build directory. The create_builddir tool has gained a
new set of kernel-agnostic platform arguments such as x86_32, or panda.
Most build targets within directories are in principle compatible with
all kernels that support the selected hardware platform. To execute a
scenario via the run tool, one has to select the kernel to use by
setting the 'KERNEL' argument in the build configuration
(etc/build.conf). Alternatively, the 'KERNEL' can be specified as
command-line argument of the Genode build system, e.g.:
make run/log KERNEL=nova
This allows us to easily switch from one kernel to another without
rebuilding any Genode component except for the very few kernel-specific
ones.
The new version of the 'create_builddir' tool is still compatible with
the old version. The old kernel-specific build directories can still be
created. However, those variants will eventually be removed.
Note that the commit removes the 'ports-foc' repository from the
generated 'build.conf' files. As this is only meaningful for 'foc',
I did not want to include it in the list of regular repositories (as
visible in a 'x86_32' build directory). Hence, the repository must
now be manually added in order to use L4Linux.
Issue #2190
This patch removes possible ambiguities with respect to the naming of
kernel-dependent binaries and libraries. It also removes the use of
kernel-specific global side effects from the build system. The reach of
kernel-specific peculiarities has thereby become limited to the actual
users of the respective 'syscall-<kernel>' libraries.
Kernel-specific build artifacts are no longer generated at magic places
within the build directory (like okl4's includes, or the L4 build
directories of L4/Fiasco and Fiasco.OC, or the build directories of
various kernels). Instead, such artifacts have been largely moved to the
libcache. E.g., the former '<build-dir>/l4/' build directory for the L4
build system resides at '<build-dir>/var/libcache/syscall-foc/build/'.
This way, the location is unique to the kernel. Note that various tools
are still generated somewhat arbitrarily under '<build-dir>/tool/' as
there is no proper formalism for building host tools yet.
As the result of this work, it has become possible to use a joint Genode
build directory that is usable with all kernels of a given hardware
platform. E.g., on x86_32, one can now seamlessly switch between linux,
nova, sel4, okl4, fiasco, foc, and pistachio without rebuilding any
components except for core, the kernel, the dynamic linker, and the timer
driver. At the current stage, such a build directory must still be
created manually. A change of the 'create_builddir' tool will follow to
make this feature easily available.
This patch also simplifies various 'run/boot_dir' plugins by removing
the option for an externally hosted kernel. This option remained unused
for many years now.
Issue #2190
This patch decouples the kernel-specific implementation of the dynamic
linker from its kernel-agnostic binary interface. The name of the
kernel-specific dynamic linker binary now corresponds to the kernel,
e.g., 'ld-linux.lib.so' or 'ld-nova.lib.so'. Applications are no longer
linked directly against a concrete instance of the dynamic linker but
against a shallow stub called 'ld.lib.so'. This stub contains nothing
but the symbols provided by the dynamic linker. It thereby represents
the Genode ABI.
At system-integration time, the kernel-specific run/boot_dir back ends
integrate the matching the kernel-specific variant of the dynamic linker
as 'ld.lib.so' into the boot image.
The ABI symbol file for the dynamic linker is located at
'base/lib/symbols/ld'. It contains the joint ABI of all supported
architectures. The new utility 'tool/abi_symbols' eases the creation of
such an ABI symbol file for a given shared library. Its result should be
manually inspected and edited as needed.
The patch removes the 'syscall' library from 'base_libs.mk' to avoid
polluting the kernel-agnostic ABI with kernel-specific interfaces.
Issue #2190
Issue #2195
This is a redesign of the root and parent interfaces to eliminate
blocking RPC calls.
- New session representation at the parent (base/session_state.h)
- base-internal root proxy mechanism as migration path
- Redesign of base/service.h
- Removes ancient 'Connection::KEEP_OPEN' feature
- Interface change of 'Child', 'Child_policy', 'Slave', 'Slave_policy'
- New 'Slave::Connection'
- Changed child-construction procedure to be compatible with the
non-blocking parent interface and to be easier to use
- The child's initial LOG session, its binary ROM session, and the
linker ROM session have become part of the child's envirenment.
- Session upgrading must now be performed via 'env.upgrade' instead
of performing a sole RPC call the parent. To make RAM upgrades
easier, the 'Connection' provides a new 'upgrade_ram' method.
Issue #2120
Replace 'dump()' debug utilities within Allocator_avl with Output::print
equivalents, and use the new Avl_tree::for_each utility to simplify
the implementation.
Ref #2159
Instead of solving the problem to deliver ROM modules to core while booting
differently for the several kernels (multi-boot, elfweaver, core re-linking),
this commit unifies the approaches. It always builds core as a library, and
after all binaries are built from a run-script, the run-tool will link an
ELF image out of the core-library and all boot modules. Thereby, core can
access its ROM modules directly.
This approach now works for all kernels except Linux.
With this solution, there is no [build_dir]/bin/core binary available anymore.
For debugging purposes you will find a core binary without boot modules, but
with debug symbols under [run_dir].core.
Fix#2095
base generic code:
* Remove unused verbosity code from mmio framework
* Remove escape sequence end heuristic from LOG
* replace Core_console with Core_log (no format specifiers)
* move test/printf to test/log
* remove `printf()` tests from the log test
* check for exact match of the log test output
base-fiasco:
* remove unused Fiasco::print_l4_threadid function
base-nova:
* remove unused hexdump utility from core
base-hw:
* remove unused Kernel::Thread::_print_* debug utilities
* always print resource summary of core during startup
* remove Kernel::Ipc_node::pd_label (not used anymore)
base*:
* Turn `printf`,`PWRN`, etc. calls into their log equivalents
Ref #1987Fix#2119
Kernel fails to lookup a capability it just got delegated, if
the backing store for the destination capability was before backed by a
zero-page. Triggers if PCID (64bit) is in use or in SMP setups.
Fixes#2101
Besides adapting the components to the use of base/log.h, the patch
cleans up a few base headers, i.e., it removes unused includes from
root/component.h, specifically base/heap.h and
ram_session/ram_session.h. Hence, components that relied on the implicit
inclusion of those headers have to manually include those headers now.
While adjusting the log messages, I repeatedly stumbled over the problem
that printing char * arguments is ambiguous. It is unclear whether to
print the argument as pointer or null-terminated string. To overcome
this problem, the patch introduces a new type 'Cstring' that allows the
caller to express that the argument should be handled as null-terminated
string. As a nice side effect, with this type in place, the optional len
argument of the 'String' class could be removed. Instead of supplying a
pair of (char const *, size_t), the constructor accepts a 'Cstring'.
This, in turn, clears the way let the 'String' constructor use the new
output mechanism to assemble a string from multiple arguments (and
thereby getting rid of snprintf within Genode in the near future).
To enforce the explicit resolution of the char * ambiguity, the 'char *'
overload of the 'print' function is marked as deleted.
Issue #1987
- remove special handling from base-nova
- add to rpc_server where it actually should be applied to
- required to work for sel4 cancel_blocking
Issue #2044
Those headers implement a platform-specific mechanism. They are never
used by components directly.
This patch also cleans up a few other remaining platform-specific
artifact such as the Fiasco.OC-specific assert.h.
Issue #1993
Session_label constructor now takes a bare string rather than a
serialized argument buffer.
Replace all instances of previous constructor with 'label_from_args'
function.
Issue #1787
This patch establishes the sole use of generic headers across all
kernels. The common 'native_capability.h' is based on the version of
base-sel4. All traditional L4 kernels and Linux use the same
implementation of the capability-lifetime management. On base-hw, NOVA,
Fiasco.OC, and seL4, custom implementations (based on their original
mechanisms) are used, with the potential to unify them further in the
future.
This change achieves binary compatibility of dynamically linked programs
across all kernels.
Furthermore, the patch introduces a Native_capability::print method,
which allows the easy output of the kernel-specific capability
representation using the base/log.h API.
Issue #1993
This patch alleviates the need for a Native_capability::Dst at the API
level. The former use case of this type as argument to
Deprecated_env::reinit uses the opaque Native_capability::Raw type
instead. The 'Raw' type contains the portion of the capability that is
transferred as-is when delegating the capability (i.e., when installing
the parent capability into a new component, or when installing a new
parent capability into a new forked Noux process). This information can
be retrieved via the new Native_capability::raw method.
Furthermore, this patch moves the functions for retriving the parent
capability to base/internal/parent_cap.h, which is meant to be
implemented in platform-specific ways. It replaces the former set of
startup/internal/_main_parent_cap.h headers.
Issue #1993
This patch introduces the Genode::raw function that prints output
directly via a low-level kernel mechanism, if available.
On base-linux, it replaces the former 'raw_write_str' function.
On base-hw, it replaces the former kernel/log.h interface.
Fixes#2012
- add a new function 'binary_ready_hook_for_gdb()' in ldso. GDB can set a
breakpoint at this function to know when ldso has loaded the binary
into memory.
- get the thread state from the NOVA kernel immediately on 'pause()'
Fixes#1968
This patch moves the thread operations from the 'Cpu_session'
to the 'Cpu_thread' interface.
A noteworthy semantic change is the meaning of the former
'exception_handler' function, which used to define both, the default
exception handler or a thread-specific signal handler. Now, the
'Cpu_session::exception_sigh' function defines the CPU-session-wide
default handler whereas the 'Cpu_thread::exception_sigh' function
defines the thread-specific one.
To retain the ability to create 'Child' objects without invoking a
capability, the child's initial thread must be created outside the
'Child::Process'. It is now represented by the 'Child::Initial_thread',
which is passed as argument to the 'Child' constructor.
Fixes#1939
This patch cleans up the thread API and comes with the following
noteworthy changes:
- Introduced Cpu_session::Weight type that replaces a formerly used
plain integer value to prevent the accidental mix-up of
arguments.
- The enum definition of Cpu_session::DEFAULT_WEIGHT moved to
Cpu_session::Weight::DEFAULT_WEIGHT
- New Thread constructor that takes a 'Env &' as first argument.
The original constructors are now marked as deprecated. For the
common use case where the default 'Weight' and 'Affinity' are
used, a shortcut is provided. In the long term, those two
constructors should be the only ones to remain.
- The former 'Thread<>' class template has been renamed to
'Thread_deprecated'.
- The former 'Thread_base' class is now called 'Thread'.
- The new 'name()' accessor returns the thread's name as 'Name'
object as centrally defined via 'Cpu_session::Name'. It is meant to
replace the old-fashioned 'name' method that takes a buffer and size
as arguments.
- Adaptation of the thread test to the new API
Issue #1954
This patch moves the base library from src/base to src/lib/base,
flattens the library-internal directory structure, and moves the common
parts of the library-description files to base/lib/mk/base.inc and
base/lib/mk/base-common.inc.
Furthermore, the patch fixes a few cosmetic issues (whitespace and
comments only) that I encountered while browsing the result.
Fixes#1952
This patch makes the former 'Process' class private to the 'Child'
class and changes the constructor of the 'Child' in a way that
principally enables the implementation of single-threaded runtime
environments that virtualize the CPU, PD, and RAM services. The
new interfaces has become free from side effects. I.e., instead
of implicitly using Genode::env()->rm_session(), it takes the reference
to the local region map as argument. Also, the handling of the dynamic
linker via global variables is gone. Now, the linker binary must be
provided as constructor argument.
Fixes#1949
This patch replaces the former 'Pd_session::bind_thread' function by a
PD-capability argument of the 'Cpu_session::create_thread' function, and
removes the ancient thread-start protocol via 'Rm_session::add_client' and
'Cpu_session::set_pager'. Threads are now bound to PDs at their creation
time and implicitly paged according to the address space of the PD.
Note the API change:
This patch changes the signature of the 'Child' and 'Process' constructors.
There is a new 'address_space' argument, which represents the region map
representing the child's address space. It is supplied separately to the
PD session capability (which principally can be invoked to obtain the
PD's address space) to allow the population of the address space
without relying on an 'Pd_session::address_space' RPC call.
Furthermore, a new (optional) env_pd argument allows the explicit
overriding of the PD capability handed out to the child as part of its
environment. It can be used to intercept the interaction of the child
with its PD session at core. This is used by Noux.
Issue #1938
This patch integrates three region maps into each PD session to
reduce the session overhead and to simplify the PD creation procedure.
Please refer to the issue cited below for an elaborative discussion.
Note the API change:
With this patch, the semantics of core's RM service have changed. Now,
the service is merely a tool for creating and destroying managed
dataspaces, which are rarely needed. Regular components no longer need a
RM session. For this reason, the corresponding argument for the
'Process' and 'Child' constructors has been removed.
The former interface of the 'Rm_session' is not named 'Region_map'. As a
minor refinement, the 'Fault_type' enum values are now part of the
'Region_map::State' struct.
Issue #1938
The return code of assign_parent remained unused. So this patch
removes it.
The bind_thread function fails only due to platform-specific limitations
such as the exhaustion of ID name spaces, which cannot be sensibly
handled by the PD-session client. If occurred, such conditions used to
be reflected by integer return codes that were used for diagnostic
messages only. The patch removes the return codes and leaves the
diagnostic output to core.
Fixes#1842
Besides unifying the Msgbuf_base classes across all platforms, this
patch merges the Ipc_marshaller functionality into Msgbuf_base, which
leads to several further simplifications. For example, this patch
eventually moves the Native_connection_state and removes all state
from the former Ipc_server to the actual server loop, which not only
makes the flow of control and information much more obvious, but is
also more flexible. I.e., on NOVA, we don't even have the notion of
reply-and-wait. Now, we are no longer forced to pretend otherwise.
Issue #1832
This patch unifies the CPU session interface across all platforms. The
former differences are moved to respective "native-CPU" interfaces.
NOVA is not covered by the patch and still relies on a custom version of
the core-internal 'cpu_session_component.h'. However, this will soon be
removed once the ongoing rework of pause/single-step on NOVA is
completed.
Fixes#1922
This commit introduces the new `Component` interface in the form of the
headers base/component.h and base/entrypoint.h. The os/server.h API
has become merely a compatibilty wrapper and will eventually be removed.
The same holds true for os/signal_rpc_dispatcher.h. The mechanism has
moved to base/signal.h and is now called 'Signal_handler'.
Since the patch shuffles headers around, please do a 'make clean' in the
build directory.
Issue #1832
This commit replaces the stateful 'Ipc_client' type with the plain
function 'ipc_call' that takes all the needed state as arguments.
The stateful 'Ipc_server' class is retained but it moved from the public
API to the internal ipc_server.h header. The kernel-specific
implementations were cleaned up and simplified. E.g., the 'wait'
function does no longer exist. The badge and exception code are no
longer carried in the message buffers but are handled in kernel-specific
ways.
Issue #610
Issue #1832
This patch moves details about the stack allocation and organization
the base-internal headers. Thereby, I replaced the notion of "thread
contexts" by "stacks" as this term is much more intuitive. The fact that
we place thread-specific information at the bottom of the stack is not
worth introducing new terminology.
Issue #1832
By moving the stub implementation to rm_session_client.cc, we can use
the generic base/include/rm_session/client.h for base-linux and
base-nova and merely use platform-specific implementations.
Issue #1832
This patch establishes a common organization of header files
internal to the base framework. The internal headers are located at
'<repository>/src/include/base/internal/'. This structure has been
choosen to make the nature of those headers immediately clear when
included:
#include <base/internal/lock_helper.h>
Issue #1832
This patch integrates the functionality of the former CAP session into
the PD session and unifies the approch of supplementing the generic PD
session with kernel-specific functionality. The latter is achieved by
the new 'Native_pd' interface. The kernel-specific interface can be
obtained via the Pd_session::native_pd accessor function. The
kernel-specific interfaces are named Nova_native_pd, Foc_native_pd, and
Linux_native_pd.
The latter change allowed for to deduplication of the
pd_session_component code among the various base platforms.
To retain API compatibility, we keep the 'Cap_session' and
'Cap_connection' around. But those classes have become mere wrappers
around the PD session interface.
Issue #1841
This patch removes the SIGNAL service from core and moves its
functionality to the PD session. Furthermore, it unifies the PD service
implementation and terminology across the various base platforms.
Issue #1841
Previously, ports that were needed for a scenario and that were not
prepared or outdated, triggered one assertion each during the second
build stage. The commit slots a mechanism in ahead that gathers all
these ports during the first build stage and reports them in form of a
list before the second build stage is entered. This list can be used
directly as argument for tool/ports/prepare_port to prepare respectively
update the ports. If, however, this mechanism is not available, for
example because a target is build without the first build stage, the old
assertion still prevents the target from running into troubles with a
missing port.
Fixes#1872
Now, the right PCI bus:device:function (BDF) is reported to the kernel
during assign_pci syscall - beforehand it was ever 0:0.0. The BDF is
needed to lookup the correct DMAR unit the kernel has to configure. This
was revealed as the DMAR unit for Intel graphics on x201 is not the same
as for all other PCI devices we have drivers for on this platform.
Fixes#1848
Use kernel branch which is more accurate in accounting memory, which avoids
kernel messages of following form:
[0] warning: insufficient resources ...
Fixes#1830
Accidentally removed by #1658. We need to make the cleanup call for server
objects - otherwise we may get in capability identifier re-use trouble.
Issue #1778
- Align implementation to the current generic implementation
- Document NOVA-specific implementation of dataspace() (as in the
original commit message)
Don't skip the cleanup call if a pager object is marked as blocked.
It happens that the pager_object is in destruction but it is also used
concurrently by the pager thread. The pager thread handling code may set the
pager object to blocked but still uses the pointer to the pager object. Avoid
locking at the state of the pager object and make the cleanup call everytime.
Error output looks like this, where the pf_ip is within
void Pager_object::_page_fault_handler(addr_t pager_obj)
method and the pf_addr is the stale pointer to the already released pager_object.
no RM attachment (READ pf_addr=xxx pf_ip=xxx from 00 <NULL>)
static void Genode::Pager_object::_page_fault_handler(Genode::addr_t): page fault, thread '<NULL>', cpu x, ip=xxx, fault address=xxx
PAGE-FAULT IN CORE (READ pf_addr=b10e0090 pf_ip=132dbc from 00 <NULL>)
Too less memory quota for a PD may be calculated, which leads to too early
punishment for a Genode process.
Discovered during Turmvilla scenario #1552 and issue #1733.
Additionally print warnings about unavailable CPUs if they are tried to be
used during pager object setup.
Discovered during Turmvilla scenario #1552 and issue #1733.
threads with prio 0 will not be started and would fail silently.
Happened on Turmvilla for the USBProxy thread in virtualbox.
Discovered during Turmvilla scenario #1552 and issue #1733.
Reduces kernel log message noise when running on kernel-debug branch.
Additionally add a more verbose core message.
Discovered during Turmvilla scenario #1552 and issue #1733.
Addressing must be PC-relative, so adapt the approach from the other
nova_x86_32 syscall bindings (description by @ssumpf):
Use call to push the current IP on the stack and add the distance of
label 0 and label 1 in order to determine the return address, which
NOVA requires in edx.
The bug only showed up with "-O0" in libc.lib.so in form of a unwanted
text relocation.
Fixes#1721
Destroying an object within the scope of a lambda/functor executed
in the object pool's apply function leads potentially to memory corruption.
Within the scope the corresponding object is locked and unlocked when
leaving the scope. Therefore, it is illegal to free the object's memory meanwhile.
This commit eliminates several places in core that destroyed wrongly in
the object pool's scope.
Fix#1713
* Move the Synced_interface from os -> base
* Align the naming of "synchronized" helpers to "Synced_*"
* Move Synced_range_allocator to core's private headers
* Remove the raw() and lock() members from Synced_allocator and
Synced_range_allocator, and re-use the Synced_interface for them
* Make core's Mapped_mem_allocator a friend class of Synced_range_allocator
to enable the needed "unsafe" access of its physical and virtual allocators
Fix#1697
Instead of holding SPEC-variable dependent files and directories inline
within the repository structure, move them into 'spec' subdirectories
at the corresponding levels, e.g.:
repos/base/include/spec
repos/base/mk/spec
repos/base/lib/mk/spec
repos/base/src/core/spec
...
Moreover, this commit removes the 'platform' directories. That term was
used in an overloaded sense. All SPEC-relative 'platform' directories are
now named 'spec'. Other files, like for instance those related to the
kernel/architecture specific startup library, where moved from 'platform'
directories to explicit, more meaningful places like e.g.: 'src/lib/startup'.
Fix#1673
Instead of returning pointers to locked objects via a lookup function,
the new object pool implementation restricts object access to
functors resp. lambda expressions that are applied to the objects
within the pool itself.
Fix#884Fix#1658
For most platforms except of NOVA a distinction between pager entrypoint
and pager activation is not needed, and only exists due to historical
reasons. Moreover, the pager thread's execution path is almost identical
between most platforms excluding NOVA, HW, and Fisco.OC. Therefore,
this commit unifies the pager loop for the other platforms, and removes
the pager activation class.