genode/repos/base/include/root/component.h

370 lines
10 KiB
C
Raw Normal View History

2011-12-22 16:19:25 +01:00
/*
* \brief Generic root component implementation
* \author Norman Feske
* \date 2006-05-22
*
* This class is there for your convenience. It performs the common actions
* that must always be taken when creating a new session.
*/
/*
* Copyright (C) 2006-2017 Genode Labs GmbH
2011-12-22 16:19:25 +01:00
*
* This file is part of the Genode OS framework, which is distributed
* under the terms of the GNU Affero General Public License version 3.
2011-12-22 16:19:25 +01:00
*/
#ifndef _INCLUDE__ROOT__COMPONENT_H_
#define _INCLUDE__ROOT__COMPONENT_H_
#include <root/root.h>
#include <base/allocator.h>
2011-12-22 16:19:25 +01:00
#include <base/rpc_server.h>
#include <base/entrypoint.h>
#include <base/service.h>
2011-12-22 16:19:25 +01:00
#include <util/arg_string.h>
#include <base/log.h>
2011-12-22 16:19:25 +01:00
namespace Genode {
class Single_client;
class Multiple_clients;
template <typename, typename POLICY = Multiple_clients> class Root_component;
}
2011-12-22 16:19:25 +01:00
/**
* Session creation policy for a single-client service
*/
class Genode::Single_client
{
private:
2011-12-22 16:19:25 +01:00
bool _used;
2011-12-22 16:19:25 +01:00
public:
2011-12-22 16:19:25 +01:00
Single_client() : _used(0) { }
2011-12-22 16:19:25 +01:00
void aquire(const char *)
{
if (_used)
throw Service_denied();
2011-12-22 16:19:25 +01:00
_used = true;
}
2011-12-22 16:19:25 +01:00
void release() { _used = false; }
};
2011-12-22 16:19:25 +01:00
/**
* Session-creation policy for a multi-client service
*/
struct Genode::Multiple_clients
{
void aquire(const char *) { }
void release() { }
};
2011-12-22 16:19:25 +01:00
/**
* Template for implementing the root interface
*
* \param SESSION_TYPE session-component type to manage,
* derived from 'Rpc_object'
* \param POLICY session-creation policy
*
* The 'POLICY' template parameter allows for constraining the session
* creation to only one instance at a time (using the 'Single_session'
* policy) or multiple instances (using the 'Multiple_sessions' policy).
*
* The 'POLICY' class must provide the following two methods:
*
* 'aquire(const char *args)' is called with the session arguments
* at creation time of each new session. It can therefore implement
* a session-creation policy taking session arguments into account.
* If the policy denies the creation of a new session, it throws
* one of the exceptions defined in the 'Root' interface.
*
* 'release' is called at the destruction time of a session. It enables
* the policy to keep track of and impose restrictions on the number
* of existing sessions.
*
* The default policy 'Multiple_clients' imposes no restrictions on the
* creation of new sessions.
*/
template <typename SESSION_TYPE, typename POLICY>
class Genode::Root_component : public Rpc_object<Typed_root<SESSION_TYPE> >,
public Local_service<SESSION_TYPE>::Factory,
private POLICY
{
private:
/*
* Entry point that manages the session objects
* created by this root interface
*/
Rpc_entrypoint *_ep;
/*
* Allocator for allocating session objects.
* This allocator must be used by the derived
* class when calling the 'new' operator for
* creating a new session.
*/
Allocator *_md_alloc;
/*
* Used by both the legacy 'Root::session' and the new 'Factory::create'
*/
SESSION_TYPE &_create(Session_state::Args const &args, Affinity affinity)
{
POLICY::aquire(args.string());
/*
* Guard to ensure that 'release' is called whenever the scope
* is left with an exception.
*/
struct Guard
{
bool ack = false;
Root_component &root;
Guard(Root_component &root) : root(root) { }
~Guard() { if (!ack) root.release(); }
} aquire_guard { *this };
/*
* We need to decrease 'ram_quota' by
* the size of the session object.
*/
Ram_quota const ram_quota = ram_quota_from_args(args.string());
size_t needed = sizeof(SESSION_TYPE) + md_alloc()->overhead(sizeof(SESSION_TYPE));
if (needed > ram_quota.value)
throw Insufficient_ram_quota();
Ram_quota const remaining_ram_quota { ram_quota.value - needed };
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
/*
* Validate that the client provided the amount of caps as mandated
* for the session interface.
*/
Cap_quota const cap_quota = cap_quota_from_args(args.string());
if (cap_quota.value < SESSION_TYPE::CAP_QUOTA)
throw Insufficient_cap_quota();
/*
* Account for the dataspace capability needed for allocating the
* session object from the sliced heap.
*/
if (cap_quota.value < 1)
throw Insufficient_cap_quota();
Cap_quota const remaining_cap_quota { cap_quota.value - 1 };
/*
* Deduce ram quota needed for allocating the session object from the
* donated ram quota.
*/
enum { MAX_ARGS_LEN = 256 };
char adjusted_args[MAX_ARGS_LEN];
strncpy(adjusted_args, args.string(), sizeof(adjusted_args));
Arg_string::set_arg(adjusted_args, sizeof(adjusted_args),
"ram_quota", String<64>(remaining_ram_quota).string());
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
Arg_string::set_arg(adjusted_args, sizeof(adjusted_args),
"cap_quota", String<64>(remaining_cap_quota).string());
SESSION_TYPE *s = 0;
try { s = _create_session(adjusted_args, affinity); }
catch (Out_of_ram) { throw Insufficient_ram_quota(); }
catch (Out_of_caps) { throw Insufficient_cap_quota(); }
catch (Service_denied) { throw; }
catch (Insufficient_cap_quota) { throw; }
catch (Insufficient_ram_quota) { throw; }
catch (...) {
warning("unexpected exception during ",
SESSION_TYPE::service_name(), "-session creation");
throw Service_denied();
}
/*
* Consider that the session-object constructor may already have
* called 'manage'.
*/
if (!s->cap().valid())
_ep->manage(s);
aquire_guard.ack = true;
return *s;
}
protected:
/**
* Create new session (to be implemented by a derived class)
*
* Only a derived class knows the constructor arguments of
* a specific session. Therefore, we cannot unify the call
* of its 'new' operator and must implement the session
* creation at a place, where the required knowledge exist.
*
* In the implementation of this method, the heap, provided
* by 'Root_component' must be used for allocating the session
* object.
*
* If the server implementation does not evaluate the session
* affinity, it suffices to override the overload without the
* affinity argument.
*
* \throw Out_of_ram
* \throw Out_of_caps
* \throw Service_denied
* \throw Insufficient_cap_quota
* \throw Insufficient_ram_quota
*/
virtual SESSION_TYPE *_create_session(const char *args,
Affinity const &)
{
return _create_session(args);
}
virtual SESSION_TYPE *_create_session(const char *args)
{
throw Service_denied();
}
/**
* Inform session about a quota upgrade
*
* Once a session is created, its client can successively extend
* its quota donation via the 'Parent::transfer_quota' operation.
* This will result in the invokation of 'Root::upgrade' at the
* root interface the session was created with. The root interface,
* in turn, informs the session about the new resources via the
* '_upgrade_session' method. The default implementation is
* suited for sessions that use a static amount of resources
* accounted for at session-creation time. For such sessions, an
* upgrade is not useful. However, sessions that dynamically
* allocate resources on behalf of its client, should respond to
* quota upgrades by implementing this method.
*
* \param session session to upgrade
* \param args description of additional resources in the
* same format as used at session creation
*/
virtual void _upgrade_session(SESSION_TYPE *, const char *) { }
virtual void _destroy_session(SESSION_TYPE *session) {
Genode::destroy(_md_alloc, session); }
/**
* Return allocator to allocate server object in '_create_session()'
*/
Allocator *md_alloc() { return _md_alloc; }
/**
* Return entrypoint that serves the root component
*/
Rpc_entrypoint *ep() { return _ep; }
public:
/**
* Constructor
*
* \param ep entry point that manages the sessions of this
* root interface
* \param md_alloc meta-data allocator providing the backing store
* for session objects
*/
Root_component(Entrypoint &ep, Allocator &md_alloc)
:
_ep(&ep.rpc_ep()), _md_alloc(&md_alloc)
{ }
/**
* Constructor
*
* \deprecated use the constructor with the 'Entrypoint &'
* argument instead
*/
Root_component(Rpc_entrypoint *ep, Allocator *md_alloc)
:
_ep(ep), _md_alloc(md_alloc)
{ }
/**************************************
** Local_service::Factory interface **
**************************************/
SESSION_TYPE &create(Session_state::Args const &args,
Affinity affinity) override
{
try { return _create(args, affinity); }
catch (Insufficient_ram_quota) { throw; }
Capability quota accounting and trading This patch mirrors the accounting and trading scheme that Genode employs for physical memory to the accounting of capability allocations. Capability quotas must now be explicitly assigned to subsystems by specifying a 'caps=<amount>' attribute to init's start nodes. Analogously to RAM quotas, cap quotas can be traded between clients and servers as part of the session protocol. The capability budget of each component is maintained by the component's corresponding PD session at core. At the current stage, the accounting is applied to RPC capabilities, signal-context capabilities, and dataspace capabilities. Capabilities that are dynamically allocated via core's CPU and TRACE service are not yet covered. Also, the capabilities allocated by resource multiplexers outside of core (like nitpicker) must be accounted by the respective servers, which is not covered yet. If a component runs out of capabilities, core's PD service prints a warning to the log. To observe the consumption of capabilities per component in detail, the PD service is equipped with a diagnostic mode, which can be enabled via the 'diag' attribute in the target node of init's routing rules. E.g., the following route enables the diagnostic mode for the PD session of the "timer" component: <default-route> <service name="PD" unscoped_label="timer"> <parent diag="yes"/> </service> ... </default-route> For subsystems based on a sub-init instance, init can be configured to report the capability-quota information of its subsystems by adding the attribute 'child_caps="yes"' to init's '<report>' config node. Init's own capability quota can be reported by adding the attribute 'init_caps="yes"'. Fixes #2398
2017-05-08 21:35:43 +02:00
catch (Insufficient_cap_quota) { throw; }
catch (...) { throw Service_denied(); }
}
void upgrade(SESSION_TYPE &session,
Session_state::Args const &args) override
{
_upgrade_session(&session, args.string());
}
void destroy(SESSION_TYPE &session) override
{
close(session.cap());
}
/********************
** Root interface **
********************/
Session_capability session(Root::Session_args const &args,
Affinity const &affinity) override
{
if (!args.valid_string()) throw Service_denied();
SESSION_TYPE &session = _create(args.string(), affinity);
return session.cap();
}
void upgrade(Session_capability session, Root::Upgrade_args const &args) override
{
if (!args.valid_string()) throw Service_denied();
_ep->apply(session, [&] (SESSION_TYPE *s) {
if (!s) return;
_upgrade_session(s, args.string());
});
}
void close(Session_capability session_cap) override
{
SESSION_TYPE * session;
_ep->apply(session_cap, [&] (SESSION_TYPE *s) {
session = s;
/* let the entry point forget the session object */
if (session) _ep->dissolve(session);
});
if (!session) return;
_destroy_session(session);
POLICY::release();
}
};
2011-12-22 16:19:25 +01:00
#endif /* _INCLUDE__ROOT__COMPONENT_H_ */