corda/docs/source/changelog.rst
Tudor Malene 543491c7df
CORDA-1461 improve devMode (#3100)
* CORDA-1461 improve devMode

* CORDA-1461 set devMode=true for driver

* CORDA-1461 fix tests and improve UI

* CORDA-1461 Address code review changes

* CORDA-1461 Missing developer emoji

* CORDA-1461 use latest cordform that sets devMode=true

* CORDA-1461 fix test and add driver overrides for notary

* CORDA-1461 fix tests, fix api-scanner version

* CORDA-1461 fix api

* CORDA-1461 formatting

* CORDA-1461 comment style
2018-05-11 17:48:02 +01:00

89 KiB
Raw Blame History

Changelog

Here's a summary of what's changed in each Corda release. For guidance on how to upgrade code from the previous release, see upgrade-notes.

Unreleased

  • Node will now gracefully fail to start if one of the required ports is already in use.
  • Node will now gracefully fail to start if devMode is true and compatibilityZoneURL is specified.
  • Added smart detection logic for the development mode setting and an option to override it from the command line.
  • Fixed an error thrown by NodeVaultService upon recording a transaction with a number of inputs greater than the default page size.
  • Fixed incorrect computation of totalStates from otherResults in NodeVaultService.
  • Changes to the JSON/YAML serialisation format from JacksonSupport, which also applies to the node shell:
    • Instant and Date objects are serialised as ISO-8601 formatted strings rather than timestamps
    • PublicKey objects are serialised and looked up according to their Base58 encoded string
    • Party objects can be deserialised by looking up their public key, in addition to their name
    • NodeInfo objects are serialised as an object and can be looked up using the same mechanism as Party
    • NetworkHostAndPort serialised according to its toString()
    • PartyAndCertificate is serialised as an object containing the name and owning key
    • SignedTransaction can now be serialized to JSON and deserialized back into an object.
  • Several members of JacksonSupport have been deprecated to highlight that they are internal and not to be used.
  • The Vault Criteria API has been extended to take a more precise specification of which class contains a field. This primarily impacts Java users; Kotlin users need take no action. The old methods have been deprecated but still work -the new methods avoid bugs that can occur when JPA schemas inherit from each other.
  • Due to ongoing work the experimental interfaces for defining custom notary services have been moved to the internal package. CorDapps implementing custom notary services will need to be updated, see samples/notary-demo for an example. Further changes may be required in the future.
  • Configuration file changes:
    • Added program line argument on-unknown-config-keys to allow specifying behaviour on unknown node configuration property keys. Values are: [FAIL, WARN, IGNORE], default to FAIL if unspecified.
    • Introduced a placeholder for custom properties within node.conf; the property key is "custom".
    • The deprecated web server now has its own web-server.conf file, separate from node.conf.
    • Property keys with double quotes (e.g. "key") in node.conf are no longer allowed, for rationale refer to corda-configuration-file.
  • More types can be serialized now: java.security.cert.CRLReason, java.security.cert.X509CRL, java.math.BigInteger
  • Upgraded H2 to v1.4.197
  • Shell (embedded available only in dev mode or via SSH) connects to the node via RPC instead of using the CordaRPCOps object directly. To enable RPC connectivity ensure nodes rpcSettings.address and rpcSettings.adminAddress settings are present.
  • Changes to the network bootstrapper:
    • The whitelist.txt file is no longer needed. The existing network parameters file is used to update the current contracts whitelist.
    • The CorDapp jars are also copied to each nodes' cordapps directory.
  • Errors thrown by a Corda node will now reported to a calling RPC client with attention to serialization and obfuscation of internal data.
  • Serializing an inner class (non-static nested class in Java, inner class in Kotlin) will be rejected explicitly by the serialization framework. Prior to this change it didn't work, but the error thrown was opaque (complaining about too few arguments to a constructor). Whilst this was possible in the older Kryo implementation (Kryo passing null as the synthesised reference to the outer class) as per the Java documentation here we are disallowing this as the paradigm in general makes little sense for contract states.
  • Node can be shut down abruptly by shutdown function in CordaRPCOps or gracefully (draining flows first) through gracefulShutdown command from shell.

Version 3.1

  • Update the fast-classpath-scanner dependent library version from 2.0.21 to 2.12.3

    Note

    Whilst this is not the latest version of this library, that being 2.18.1 at time of writing, versions later than 2.12.3 (including 2.12.4) exhibit a different issue.

  • Updated the api scanner gradle plugin to work the same way as the version in master. These changes make the api scanner more accurate and fix a couple of bugs, and change the format of the api-current.txt file slightly. Backporting these changes to the v3 branch will make it easier for us to ensure that apis are stable for future versions. These changes are released in gradle plugins version 3.0.10. For more information on the api scanner see the documentation.

  • Fixed security vulnerability when using the HashAttachmentConstraint. Added strict check that the contract JARs referenced in a transaction were deployed on the node.

  • Fixed node's behaviour on startup when there is no connectivity to network map. Node continues to work normally if it has all the needed network data, waiting in the background for network map to become available.

Version 3.0

  • Per CorDapp configuration is now exposed. CordappContext now exposes a CordappConfig object that is populated at CorDapp context creation time from a file source during runtime.

  • Introduced Flow Draining mode, in which a node continues executing existing flows, but does not start new. This is to support graceful node shutdown/restarts. In particular, when this mode is on, new flows through RPC will be rejected, scheduled flows will be ignored, and initial session messages will not be consumed. This will ensure that the number of checkpoints will strictly diminish with time, allowing for a clean shutdown.

  • Make the serialisation finger-printer a pluggable entity rather than hard wiring into the factory

  • Removed blacklisted word checks in Corda X.500 name to allow "Server" or "Node" to be use as part of the legal name.

  • Separated our pre-existing Artemis broker into an RPC broker and a P2P broker.

  • Refactored NodeConfiguration to expose NodeRpcOptions (using top-level "rpcAddress" property still works with warning).

  • Modified CordaRPCClient constructor to take a SSLConfiguration? additional parameter, defaulted to null.

  • Introduced CertificateChainCheckPolicy.UsernameMustMatchCommonName sub-type, allowing customers to optionally enforce username == CN condition on RPC SSL certificates.

  • Modified DriverDSL and sub-types to allow specifying RPC settings for the Node.

  • Modified the DriverDSL to start Cordformation nodes allowing automatic generation of "rpcSettings.adminAddress" in case "rcpSettings.useSsl" is false (the default).

  • Introduced UnsafeCertificatesFactory allowing programmatic generation of X509 certificates for test purposes.

  • JPA Mapping annotations for States extending CommonSchemaV1.LinearState and CommonSchemaV1.FungibleState on the participants collection need to be moved to the actual class. This allows to properly specify the unique table name per a collection. See: DummyDealStateSchemaV1.PersistentDummyDealState

  • X.509 certificates now have an extension that specifies the Corda role the certificate is used for, and the role hierarchy is now enforced in the validation code. See net.corda.core.internal.CertRole for the current implementation until final documentation is prepared. Certificates at NODE_CA, WELL_KNOWN_SERVICE_IDENTITY and above must only ever by issued by network services and therefore issuance constraints are not relevant to end users. The TLS, WELL_KNOWN_LEGAL_IDENTITY roles must be issued by the NODE_CA certificate issued by the Doorman, and CONFIDENTIAL_IDENTITY certificates must be issued from a WELL_KNOWN_LEGAL_IDENTITY certificate. For a detailed specification of the extension please see permissioning.

  • The network map service concept has been re-designed. More information can be found in network-map.

    • The previous design was never intended to be final but was rather a quick implementation in the earliest days of the Corda project to unblock higher priority items. It suffers from numerous disadvantages including lack of scalability, as one node is expected to hold open and manage connections to every node on the network; not reliable; hard to defend against DoS attacks; etc.
    • There is no longer a special network map node for distributing the network map to the other nodes. Instead the network map is now a collection of signed NodeInfo files distributed via HTTP.
    • The certificateSigningService config has been replaced by compatibilityZoneURL which is the base URL for the doorman registration and for downloading the network map. There is also an end-point for the node to publish its node-info object, which the node does each time it changes. networkMapService config has been removed.
    • To support local and test deployments, the node polls the additional-node-infos directory for these signed NodeInfo objects which are stored in its local cache. On startup the node generates its own signed file with the filename format "nodeInfo-*". This can be copied to every node's additional-node-infos directory that is part of the network.
    • Cordform (which is the deployNodes gradle task) does this copying automatically for the demos. The NetworkMap parameter is no longer needed.
    • For test deployments we've introduced a bootstrapping tool (see setting-up-a-corda-network).
    • extraAdvertisedServiceIds, notaryNodeAddress, notaryClusterAddresses and bftSMaRt configs have been removed. The configuration of notaries has been simplified into a single notary config object. See corda-configuration-file for more details.
    • Introducing the concept of network parameters which are a set of constants which all nodes on a network must agree on to correctly interop. These can be retrieved from ServiceHub.networkParameters.
    • One of these parameters, maxTransactionSize, limits the size of a transaction, including its attachments, so that all nodes have sufficient memory to validate transactions.
    • The set of valid notaries has been moved to the network parameters. Notaries are no longer identified by the CN in their X500 name.
    • Single node notaries no longer have a second separate notary identity. Their main identity is their notary identity. Use NetworkMapCache.notaryIdentities to get the list of available notaries.
    • Added NetworkMapCache.getNodesByLegalName for querying nodes belonging to a distributed service such as a notary cluster where they all share a common identity. NetworkMapCache.getNodeByLegalName has been tightened to throw if more than one node with the legal name is found.
    • The common name in the node's X500 legal name is no longer reserved and can be used as part of the node's name.
    • Moved NodeInfoSchema to internal package as the node info's database schema is not part of the public API. This was needed to allow changes to the schema.
  • Support for external user credentials data source and password encryption [CORDA-827].

  • Exporting additional JMX metrics (artemis, hibernate statistics) and loading Jolokia agent at JVM startup when using DriverDSL and/or cordformation node runner.

  • Removed confusing property database.initDatabase, enabling its guarded behaviour with the dev-mode. In devMode Hibernate will try to create or update database schemas, otherwise it will expect relevant schemas to be present in the database (pre configured via DDL scripts or equivalent), and validate these are correct.

  • AttachmentStorage now allows providing metadata on attachments upload - username and filename, currently as plain strings. Those can be then used for querying, utilizing queryAttachments method of the same interface.

  • SSH Server - The node can now expose shell via SSH server with proper authorization and permissioning built in.

  • CordaRPCOps implementation now checks permissions for any function invocation, rather than just when starting flows.

  • wellKnownPartyFromAnonymous() now always resolve the key to a Party, then the party to the well known party. Previously if it was passed a Party it would use its name as-is without verifying the key matched that name.

  • OpaqueBytes.bytes now returns a clone of its underlying ByteArray, and has been redeclared as final. This is a minor change to the public API, but is required to ensure that classes like SecureHash are immutable.

  • Experimental support for PostgreSQL: CashSelection done using window functions

  • FlowLogic now exposes a series of function called receiveAll(...) allowing to join receive(...) instructions.

  • Renamed "plugins" directory on nodes to "cordapps"

  • The Cordformation gradle plugin has been split into cordformation and cordapp. The former builds and deploys nodes for development and testing, the latter turns a project into a cordapp project that generates JARs in the standard CorDapp format.

  • Cordapp now has a name field for identifying CorDapps and all CorDapp names are printed to console at startup.

  • Enums now respect the whitelist applied to the Serializer factory serializing / deserializing them. If the enum isn't either annotated with the @CordaSerializable annotation or explicitly whitelisted then a NotSerializableException is thrown.

  • Gradle task deployNodes can have an additional parameter configFile with the path to a properties file to be appended to node.conf.

  • Cordformation node building DSL can have an additional parameter configFile with the path to a properties file to be appended to node.conf.

  • FlowLogic now has a static method called sleep which can be used in certain circumstances to help with resolving contention over states in flows. This should be used in place of any other sleep primitive since these are not compatible with flows and their use will be prevented at some point in the future. Pay attention to the warnings and limitations described in the documentation for this method. This helps resolve a bug in Cash coin selection. A new static property currentTopLevel returns the top most FlowLogic instance, or null if not in a flow.

  • CordaService annotated classes should be upgraded to take a constructor parameter of type AppServiceHub which allows services to start flows marked with the StartableByService annotation. For backwards compatability service classes with only ServiceHub constructors will still work.

  • TimeWindow now has a length property that returns the length of the time-window as a java.time.Duration object, or null if the time-window isn't closed.

  • A new SIGNERS_GROUP with ordinal 6 has been added to ComponentGroupEnum that corresponds to the Command signers.

  • PartialMerkleTree is equipped with a leafIndex function that returns the index of a hash (leaf) in the partial Merkle tree structure.

  • A new function checkCommandVisibility(publicKey: PublicKey) has been added to FilteredTransaction to check if every command that a signer should receive (e.g. an Oracle) is indeed visible.

  • Changed the AMQP serialiser to use the oficially assigned R3 identifier rather than a placeholder.

  • The ReceiveTransactionFlow can now be told to record the transaction at the same time as receiving it. Using this feature, better support for observer/regulator nodes has been added. See tutorial-observer-nodes.

  • Added an overload of TransactionWithSignatures.verifySignaturesExcept which takes in a collection of PublicKey s.

  • DriverDSLExposedInterface has been renamed to DriverDSL and the waitForAllNodesToFinish() method has instead become a parameter on driver creation.

  • Values for the database.transactionIsolationLevel config now follow the java.sql.Connection int constants but without the "TRANSACTION" prefix, i.e. "NONE", "READ_UNCOMMITTED", etc.

  • Peer-to-peer communications is now via AMQP 1.0 as default. Although the legacy Artemis CORE bridging can still be used by setting the useAMQPBridges configuration property to false.

  • The Artemis topics used for peer-to-peer communication have been changed to be more consistent with future cryptographic agility and to open up the future possibility of sharing brokers between nodes. This is a breaking wire level change as it means that nodes after this change will not be able to communicate correctly with nodes running the previous version. Also, any pending enqueued messages in the Artemis message store will not be delivered correctly to their original target. However, assuming a clean reset of the artemis data and that the nodes are consistent versions, data persisted via the AMQP serializer will be forward compatible.

  • The ability for CordaServices to register callbacks so they can be notified of shutdown and clean up resource such as open ports.

  • Move to a message based control of peer to peer bridge formation to allow for future out of process bridging components. This removes the legacy Artemis bridges completely, so the useAMQPBridges configuration property has been removed.

  • A CordaInternal attribute has been added to identify properties that are not intended to form part of the public api and as such are not intended for public use. This is alongside the existing DoNotImplement attribute for classes which provide Corda functionality to user applications, but should not be implemented by consumers, and any classes which are defined in .internal packages, which are also not for public use.

  • Marked stateMachine on FlowLogic as CordaInternal to make clear that is it not part of the public api and is only for internal use

  • Provided experimental support for specifying your own webserver to be used instead of the default development webserver in Cordform using the webserverJar argument

  • Created new StartedMockNode and UnstartedMockNode classes which are wrappers around our MockNode implementation that expose relevant methods for testing without exposing internals, create these using a MockNetwork.

  • The test utils in Expect.kt, SerializationTestHelpers.kt, TestConstants.kt and TestUtils.kt have moved from the net.corda.testing package to the net.corda.testing.core package, and FlowStackSnapshot.kt has moved to the net.corda.testing.services package. Moving existing classes out of the net.corda.testing.* package will help make it clearer which parts of the api are stable. Scripts have been provided to smooth the upgrade process for existing projects in the tools\scripts directory of the Corda repo.

  • TransactionSignature includes a new partialMerkleTree property, required for future support of signing over multiple transactions at once.

  • Updating Jolokia dependency to latest version (includes security fixes)

Release 1.0

  • Unification of VaultQuery And VaultService APIs Developers now only need to work with a single Vault Service API for all needs.

  • Java 8 lambdas now work property with Kryo during check-pointing.

  • Java 8 serializable lambdas now work property with Kryo during check-pointing.

  • String constants have been marked as const type in Kotlin, eliminating cases where functions of the form get<constant name>() were created for the Java API. These can now be referenced by their name directly.

  • FlowLogic communication has been extensively rewritten to use functions on FlowSession as the base for communication between nodes.

    • Calls to send(), receive() and sendAndReceive() on FlowLogic should be replaced with calls to the function of the same name on FlowSession. Note that the replacement functions do not take in a destination parameter, as this is defined in the session.
    • Initiated flows now take in a FlowSession instead of Party in their constructor. If you need to access the counterparty identity, it is in the counterparty property of the flow session.
  • Added X509EdDSAEngine to intercept and rewrite EdDSA public keys wrapped in X509Key instances. This corrects an issue with verifying certificate paths loaded from a Java Keystore where they contain EdDSA keys.

  • Confidential identities are now complete:

    • The identity negotiation flow is now called SwapIdentitiesFlow, renamed from TransactionKeyFlow.
    • generateSpend() now creates a new confidential identity for the change address rather than using the identity of the input state owner.
    • Please see the documentation key-concepts-identity and api-identity for more details.
  • Remove the legacy web front end from the SIMM demo.

  • NodeInfo and NetworkMapCache changes:

    • Removed NodeInfo::legalIdentity in preparation for handling of multiple identities. We left list of NodeInfo::legalIdentitiesAndCerts, the first identity still plays a special role of main node identity.
    • We no longer support advertising services in network map. Removed NodeInfo::advertisedServices, serviceIdentities and notaryIdentity.
    • Removed service methods from NetworkMapCache: partyNodes, networkMapNodes, notaryNodes, regulatorNodes, getNodesWithService, getPeersWithService, getRecommended, getNodesByAdvertisedServiceIdentityKey, getAnyNotary, notaryNode, getAnyServiceOfType. To get all known NodeInfo's call allNodes.
    • In preparation for NetworkMapService redesign and distributing notaries through NetworkParameters we added NetworkMapCache::notaryIdentities list to enable to lookup for notary parties known to the network. Related CordaRPCOps::notaryIdentities was introduced. Other special nodes parties like Oracles or Regulators need to be specified directly in CorDapp or flow.
    • Moved ServiceType and ServiceInfo to net.corda.nodeapi package as services are only required on node startup.
  • Adding enum support to the class carpenter

  • ContractState::contract has been moved TransactionState::contract and it's type has changed to String in order to support dynamic classloading of contract and contract constraints.

  • CorDapps that contain contracts are now automatically loaded into the attachment storage - for CorDapp developers this now means that contracts should be stored in separate JARs to flows, services and utilities to avoid large JARs being auto imported to the attachment store.

  • About half of the code in test-utils has been moved to a new module node-driver, and the test scope modules are now located in a testing directory.

  • CordaPluginRegistry has been renamed to SerializationWhitelist and moved to the net.corda.core.serialization package. The API for whitelisting types that can't be annotated was slightly simplified. This class used to contain many things, but as we switched to annotations and classpath scanning over time it hollowed out until this was the only functionality left. You also need to rename your services resource file to the new class name. An associated property on MockNode was renamed from testPluginRegistries to testSerializationWhitelists.

  • Contract Upgrades: deprecated RPC authorisation / deauthorisation API calls in favour of equivalent flows in ContractUpgradeFlow. Implemented contract upgrade persistence using JDBC backed persistent map.

  • Vault query common attributes (state status and contract state types) are now handled correctly when using composite criteria specifications. State status is overridable. Contract states types are aggregatable.

  • Cash selection algorithm is now pluggable (with H2 being the default implementation)

  • Removed usage of Requery ORM library (repalced with JPA/Hibernate)

  • Vault Query performance improvement (replaced expensive per query SQL statement to obtain concrete state types with single query on start-up followed by dynamic updates using vault state observable))

  • Vault Query fix: filter by multiple issuer names in FungibleAssetQueryCriteria

  • Following deprecated methods have been removed:

    • In DataFeed
      • first and current, replaced by snapshot
      • second and future, replaced by updates
    • In CordaRPCOps
      • stateMachinesAndUpdates, replaced by stateMachinesFeed
      • verifiedTransactions, replaced by verifiedTransactionsFeed
      • stateMachineRecordedTransactionMapping, replaced by stateMachineRecordedTransactionMappingFeed
      • networkMapUpdates, replaced by networkMapFeed
  • Due to security concerns and the need to remove the concept of state relevancy (which isn't needed in Corda), ResolveTransactionsFlow has been made internal. Instead merge the receipt of the SignedTransaction and the subsequent sub-flow call to ResolveTransactionsFlow with a single call to ReceiveTransactionFlow. The flow running on the counterparty must use SendTransactionFlow at the correct place. There is also ReceiveStateAndRefFlow and SendStateAndRefFlow for dealing with StateAndRef's.

  • Vault query soft locking enhancements and deprecations

    • removed original VaultService softLockedStates query mechanism.
    • introduced improved SoftLockingCondition filterable attribute in VaultQueryCriteria to enable specification of different soft locking retrieval behaviours (exclusive of soft locked states, soft locked states only, specified by set of lock ids)
  • Trader demo now issues cash and commercial paper directly from the bank node, rather than the seller node self-issuing commercial paper but labelling it as if issued by the bank.

  • Merged handling of well known and confidential identities in the identity service. Registration now takes in an identity (either type) plus supporting certificate path, and de-anonymisation simply returns the issuing identity where known. If you specifically need well known identities, use the network map, which is the authoritative source of current well known identities.

  • Currency-related API in net.corda.core.contracts.ContractsDSL has moved to `net.corda.finance.CurrencyUtils.

  • Remove IssuerFlow as it allowed nodes to request arbitrary amounts of cash to be issued from any remote node. Use CashIssueFlow instead.

  • Some utility/extension functions (sumOrThrow, sumOrNull, sumOrZero on Amount and Commodity) have moved to be static methods on the classes themselves. This improves the API for Java users who no longer have to see or known about file-level FooKt style classes generated by the Kotlin compile, but means that IntelliJ no longer auto-suggests these extension functions in completion unless you add import lines for them yourself (this is Kotlin IDE bug KT-15286).

  • :finance module now acting as a CorDapp with regard to flow registration, schemas and serializable types.

  • WebServerPluginRegistry now has a customizeJSONSerialization which can be overridden to extend the REST JSON serializers. In particular the IRS demos must now register the BusinessCalendar serializers.

  • Moved :finance gradle project files into a net.corda.finance package namespace. This may require adjusting imports of Cash flow references and also of StartFlow permission in gradle.build files.

  • Removed the concept of relevancy from LinearState. The ContractState's relevancy to the vault can be determined by the flow context, the vault will process any transaction from a flow which is not derived from transaction resolution verification.

  • Removed the tolerance attribute from TimeWindowChecker and thus, there is no extra tolerance on the notary side anymore.

  • The FungibleAsset interface has been made simpler. The Commands grouping interface that included the Move, Issue and Exit interfaces have all been removed, while the move function has been renamed to withNewOwnerAndAmount to be consistent with the withNewOwner function of the OwnableState.

  • The IssueCommand interface has been removed from Structures, because, due to the introduction of nonces per transaction component, the issue command does not need a nonce anymore and it does not require any other attributes.

  • As a consequence of the above and the simpler FungibleAsset format, fungible assets like Cash now use class Issue : TypeOnlyCommandData(), because it's only its presence (Issue) that matters.

  • A new PrivacySalt transaction component is introduced, which is now an attribute in TraversableTransaction and inherently in WireTransaction.

  • A new nonces: List<SecureHash> feature has been added to FilteredLeaves.

  • Due to the nonces and PrivacySalt introduction, new functions have been added to MerkleTransaction: fun <T : Any> serializedHash(x: T, privacySalt: PrivacySalt?, index: Int): SecureHash fun <T : Any> serializedHash(x: T, nonce: SecureHash): SecureHash fun computeNonce(privacySalt: PrivacySalt, index: Int).

  • A new SignatureMetadata data class is introduced with two attributes, platformVersion: Int and schemeNumberID: Int (the signature scheme used).

  • As part of the metadata support in signatures, a new data class SignableData(val txId: SecureHash, val signatureMetadata: SignatureMetadata) is introduced, which represents the object actually signed.

  • The unused MetaData and SignatureType in crypto package have been removed.

  • The class TransactionSignature(bytes: ByteArray, val by: PublicKey, val signatureMetadata: SignatureMetadata): DigitalSignature(bytes) class is now utilised Vs the old DigitalSignature.WithKey for Corda transaction signatures. Practically, it takes the signatureMetadata as an extra input, in order to support signing both the transaction and the extra metadata.

  • To reflect changes in the signing process, the Crypto object is now equipped with the: fun doSign(keyPair: KeyPair, signableData: SignableData): TransactionSignature and fun doVerify(txId: SecureHash, transactionSignature: TransactionSignature): Boolean functions.

  • SerializationCustomization.addToWhitelist() now accepts multiple classes via varargs.

  • Two functions to easily sign a FilteredTransaction have been added to ServiceHub: createSignature(filteredTransaction: FilteredTransaction, publicKey: PublicKey) and createSignature(filteredTransaction: FilteredTransaction) to sign with the legal identity key.

  • A new helper method buildFilteredTransaction(filtering: Predicate<Any>) is added to SignedTransaction to directly build a FilteredTransaction using provided filtering functions, without first accessing the tx: WireTransaction.

  • Test type NodeHandle now has method stop(): CordaFuture<Unit> that terminates the referenced node.

  • Fixed some issues in IRS demo:
    • Fixed leg and floating leg notional amounts were not displayed for created deals neither in single nor in list view.
    • Parties were not displayed for created deals in single view.
    • Non-default notional amounts caused the creation of new deals to fail.

Warning

Renamed configuration property key basedir to baseDirectory. This will require updating existing configuration files.

  • Removed deprecated parts of the API.
  • Removed PluginServiceHub. Replace with ServiceHub for @CordaService constructors.
  • X509CertificateHolder has been removed from the public API, replaced by java.security.X509Certificate.
  • Moved CityDatabase out of core and into finance
  • All of the serializedHash and computeNonce functions have been removed from MerkleTransaction. The serializedHash(x: T) and computeNonce were moved to CryptoUtils.
  • Two overloaded methods componentHash(opaqueBytes: OpaqueBytes, privacySalt: PrivacySalt, componentGroupIndex: Int, internalIndex: Int): SecureHash and componentHash(nonce: SecureHash, opaqueBytes: OpaqueBytes): SecureHash have been added to CryptoUtils. Similarly to computeNonce, they internally use SHA256d for nonce and leaf hash computations.
  • The verify(node: PartialTree, usedHashes: MutableList<SecureHash>): SecureHash in PartialMerkleTree has been renamed to rootAndUsedHashes and is now public, as it is required in the verify function of FilteredTransaction.
  • TraversableTransaction is now an abstract class extending CoreTransaction. WireTransaction and FilteredTransaction now extend TraversableTransaction.
  • Two classes, ComponentGroup(open val groupIndex: Int, open val components: List<OpaqueBytes>) and FilteredComponentGroup(override val groupIndex: Int, override val components: List<OpaqueBytes>, val nonces: List<SecureHash>, val partialMerkleTree: PartialMerkleTree): ComponentGroup(groupIndex, components) have been added, which are properties of the WireTransaction and FilteredTransaction, respectively.
  • checkAllComponentsVisible(componentGroupEnum: ComponentGroupEnum) is added to FilteredTransaction, a new function to check if all components are visible in a specific component-group.
  • To allow for backwards compatibility, WireTransaction and FilteredTransaction have new fields and constructors: WireTransaction(componentGroups: List<ComponentGroup>, privacySalt: PrivacySalt = PrivacySalt()), FilteredTransaction private constructor(id: SecureHash,filteredComponentGroups: List<FilteredComponentGroup>, groupHashes: List<SecureHash>. FilteredTransaction is still built via buildFilteredTransaction(wtx: WireTransaction, filtering: Predicate<Any>).
  • FilteredLeaves class have been removed and as a result we can directly call the components from FilteredTransaction, such as ftx.inputs Vs the old ftx.filteredLeaves.inputs.
  • A new ComponentGroupEnum is added with the following enum items: INPUTS_GROUP, OUTPUTS_GROUP, COMMANDS_GROUP, ATTACHMENTS_GROUP, NOTARY_GROUP, TIMEWINDOW_GROUP.
  • ContractUpgradeFlow.Initiator has been renamed to ContractUpgradeFlow.Initiate
  • @RPCSinceVersion, RPCException and PermissionException have moved to net.corda.client.rpc.
  • Current implementation of SSL in CordaRPCClient has been removed until we have a better solution which doesn't rely on the node's keystore.

Milestone 14

  • Changes in NodeInfo:

    • PhysicalLocation was renamed to WorldMapLocation to emphasise that it doesn't need to map to a truly physical location of the node server.
    • Slots for multiple IP addresses and legalIdentitiesAndCert entries were introduced. Addresses are no longer of type SingleMessageRecipient, but of NetworkHostAndPort.
  • ServiceHub.storageService has been removed. attachments and validatedTransactions are now direct members of ServiceHub.

  • Mock identity constants used in tests, such as ALICE, BOB, DUMMY_NOTARY, have moved to net.corda.testing in the test-utils module.

  • DummyContract, DummyContractV2, DummyLinearContract and DummyState have moved to net.corda.testing.contracts in the test-utils modules.

  • In Java, QueryCriteriaUtilsKt has moved to QueryCriteriaUtils. Also and and or are now instance methods of QueryCrtieria.

  • random63BitValue() has moved to CryptoUtils

  • Added additional common Sort attributes (see Sort.CommandStateAttribute) for use in Vault Query criteria to include STATE_REF, STATE_REF_TXN_ID, STATE_REF_INDEX

  • Moved the core flows previously found in net.corda.flows into net.corda.core.flows. This is so that all packages in the core module begin with net.corda.core.

  • FinalityFlow can now be subclassed, and the broadcastTransaction and lookupParties function can be overriden in order to handle cases where no single transaction participant is aware of all parties, and therefore the transaction must be relayed between participants rather than sent from a single node.

  • TransactionForContract has been removed and all usages of this class have been replaced with usage of LedgerTransaction. In particular Contract.verify and the Clauses API have been changed and now take a LedgerTransaction as passed in parameter. The prinicpal consequence of this is that the types of the input and output collections on the transaction object have changed, so it may be necessary to map down to the ContractState sub-properties in existing code.

  • Added various query methods to LedgerTransaction to simplify querying of states and commands. In the same vain Command is now parameterised on the CommandData field.

  • Kotlin utilities that we deemed useful enough to keep public have been moved out of net.corda.core.Utils and into net.corda.core.utilities.KotlinUtils. The other utilities have been marked as internal.

  • Changes to Cordformation/ cordapp building:

    • Cordformation modifies the JAR task to make cordapps build as semi fat JARs containing all dependencies except other cordapps and Corda core dependencies.
    • Cordformation adds a corda and cordaRuntime configuration to projects which cordapp developers should use to exclude core Corda JARs from being built into Cordapp fat JARs.
  • database field in AbstractNode class has changed the type from org.jetbrains.exposed.sql.Database to net.corda.node.utilities.CordaPersistence - no change is needed for the typical use (i.e. services.database.transaction { code block } ) however a change is required when Database was explicitly declared

  • DigitalSignature.LegallyIdentifiable, previously used to identify a signer (e.g. in Oracles), has been removed. One can use the public key to derive the corresponding identity.

  • Vault Query improvements and fixes:

    • FIX inconsistent behaviour: Vault Query defaults to UNCONSUMED in all QueryCriteria types
    • FIX serialization error: Vault Query over RPC when using custom attributes using VaultCustomQueryCriteria.
    • Aggregate function support: extended VaultCustomQueryCriteria and associated DSL to enable specification of aggregate functions (sum, max, min, avg, count) with, optional, group by clauses and sorting (on calculated aggregate).
    • Pagination simplification. Pagination continues to be optional, with following changes:
      • If no PageSpecification provided then a maximum of MAX_PAGE_SIZE (200) results will be returned, otherwise we fail-fast with a VaultQueryException to alert the API user to the need to specify a PageSpecification. Internally, we no longer need to calculate a results count (thus eliminating an expensive SQL query) unless a PageSpecification is supplied (note: that a value of -1 is returned for total_results in this scenario). Internally, we now use the AggregateFunction capability to perform the count.
      • Paging now starts from 1 (was previously 0).
    • Additional Sort criteria: by StateRef (or constituents: txId, index)
  • Confidential identities API improvements

    • Registering anonymous identities now takes in AnonymousPartyAndPath
    • AnonymousParty.toString() now uses toStringShort() to match other toString() functions
    • Add verifyAnonymousIdentity() function to verify without storing an identity
    • Replace pathForAnonymous() with anonymousFromKey() which matches actual use-cases better
    • Add unit test for fetching the anonymous identity from a key
    • Update verifyAnonymousIdentity() function signature to match registerAnonymousIdentity()
    • Rename AnonymisedIdentity to AnonymousPartyAndPath
    • Remove certificate from AnonymousPartyAndPath as it's not actually used.
    • Rename registerAnonymousIdentity() to verifyAndRegisterAnonymousIdentity()
  • Added JPA AbstractPartyConverter to ensure identity schema attributes are persisted securely according to type (well known party, resolvable anonymous party, completely anonymous party).

Milestone 13

Special thank you to Frederic Dalibard, for his contribution which adds support for more currencies to the DemoBench and Explorer tools.

  • A new Vault Query service:

    • Implemented using JPA and Hibernate, this new service provides the ability to specify advanced queries using criteria specification sets for both vault attributes and custom contract specific attributes. In addition, new queries provide sorting and pagination capabilities. The new API provides two function variants which are exposed for usage within Flows and by RPC clients:

      • queryBy() for point-in-time snapshot queries (replaces several existing VaultService functions and a number of Kotlin-only extension functions)
      • trackBy() for snapshot and streaming updates (replaces the VaultService track() function and the RPC vaultAndUpdates() function)

      Existing VaultService API methods will be maintained as deprecated until the following milestone release.

    • The NodeSchema service has been enhanced to automatically generate mapped objects for any ContractState objects that extend FungibleAsset or LinearState, such that common attributes of those parent states are persisted to two new vault tables: vault_fungible_states and vault_linear_states (and thus queryable using the new Vault Query service API). Similarly, two new common JPA superclass schemas (CommonSchemaV1.FungibleState and CommonSchemaV1.LinearState) mirror the associated FungibleAsset and LinearState interface states to enable CorDapp developers to create new custom schemas by extension (rather than duplication of common attribute mappings)

    • A new configurable field requiredSchemas has been added to the CordaPluginRegistry to enable CorDapps to register custom contract state schemas they wish to query using the new Vault Query service API (using the VaultCustomQueryCriteria).

    • See api-vault-query for full details and code samples of using the new Vault Query service.

  • Identity and cryptography related changes:

    • Enable certificate validation in most scenarios (will be enforced in all cases in an upcoming milestone).
    • Added DER encoded format for CompositeKey so they can be used in X.509 certificates.
    • Corrected several tests which made assumptions about counterparty keys, which are invalid when confidential identities are used.
    • A new RPC has been added to support fuzzy matching of X.500 names, for instance, to translate from user input to an unambiguous identity by searching the network map.
    • A function for deterministic key derivation Crypto.deriveKeyPair(privateKey: PrivateKey, seed: ByteArray) has been implemented to support deterministic KeyPair derivation using an existing private key and a seed as inputs. This operation is based on the HKDF scheme and it's a variant of the hardened parent-private -> child-private key derivation function of the BIP32 protocol, but it doesn't utilize extension chain codes. Currently, this function supports the following schemes: ECDSA secp256r1 (NIST P-256), ECDSA secp256k1 and EdDSA ed25519.
  • A new ClassWhitelist implementation, AllButBlacklisted is used internally to blacklist classes/interfaces, which are not expected to be serialised during checkpoints, such as Thread, Connection and HashSet. This implementation supports inheritance and if a superclass or superinterface of a class is blacklisted, so is the class itself. An IllegalStateException informs the user if a class is blacklisted and such an exception is returned before checking for @CordaSerializable; thus, blacklisting precedes annotation checking.

  • TimeWindow has a new 5th factory method TimeWindow.fromStartAndDuration(fromTime: Instant, duration: Duration) which takes a start-time and a period-of-validity (after this start-time) as inputs.

  • The node driver has moved to net.corda.testing.driver in the test-utils module.

  • Web API related collections CordaPluginRegistry.webApis and CordaPluginRegistry.staticServeDirs moved to net.corda.webserver.services.WebServerPluginRegistry in webserver module. Classes serving Web API should now extend WebServerPluginRegistry instead of CordaPluginRegistry and they should be registered in resources/META-INF/services/net.corda.webserver.services.WebServerPluginRegistry.

  • Added a flag to the driver that allows the running of started nodes in-process, allowing easier debugging. To enable use driver(startNodesInProcess = true) { .. }, or startNode(startInSameProcess = true, ..) to specify for individual nodes.

  • Dependencies changes:
    • Upgraded Dokka to v0.9.14.
    • Upgraded Gradle Plugins to 0.12.4.
    • Upgraded Apache ActiveMQ Artemis to v2.1.0.
    • Upgraded Netty to v4.1.9.Final.
    • Upgraded BouncyCastle to v1.57.
    • Upgraded Requery to v1.3.1.

Milestone 12 (First Public Beta)

  • Quite a few changes have been made to the flow API which should make things simpler when writing CorDapps:

    • CordaPluginRegistry.requiredFlows is no longer needed. Instead annotate any flows you wish to start via RPC with @StartableByRPC and any scheduled flows with @SchedulableFlow.
    • CordaPluginRegistry.servicePlugins is also no longer used, along with PluginServiceHub.registerFlowInitiator. Instead annotate your initiated flows with @InitiatedBy. This annotation takes a single parameter which is the initiating flow. This initiating flow further has to be annotated with @InitiatingFlow. For any services you may have, such as oracles, annotate them with @CordaService. These annotations will be picked up automatically when the node starts up.
    • Due to these changes, when unit testing flows make sure to use AbstractNode.registerInitiatedFlow so that the flows are wired up. Likewise for services use AbstractNode.installCordaService.
    • Related to InitiatingFlow, the shareParentSessions boolean parameter of FlowLogic.subFlow has been removed. This was an unfortunate parameter that unnecessarily exposed the inner workings of flow sessions. Now, if your sub-flow can be started outside the context of the parent flow then annotate it with @InitiatingFlow. If it's meant to be used as a continuation of the existing parent flow, such as CollectSignaturesFlow, then it doesn't need any annotation.
    • The InitiatingFlow annotation also has an integer version property which assigns the initiating flow a version number, defaulting to 1 if it's not specified. This enables versioning of flows with nodes only accepting communication if the version number matches. At some point we will support the ability for a node to have multiple versions of the same flow registered, enabling backwards compatibility of flows.
    • ContractUpgradeFlow.Instigator has been renamed to just ContractUpgradeFlow.
    • NotaryChangeFlow.Instigator has been renamed to just NotaryChangeFlow.
    • FlowLogic.getCounterpartyMarker is no longer used and been deprecated for removal. If you were using this to manage multiple independent message streams with the same party in the same flow then use sub-flows instead.
  • There are major changes to the Party class as part of confidential identities:

    • Party has moved to the net.corda.core.identity package; there is a deprecated class in its place for backwards compatibility, but it will be removed in a future release and developers should move to the new class as soon as possible.
    • There is a new AbstractParty superclass to Party, which contains just the public key. This now replaces use of Party and PublicKey in state objects, and allows use of full or anonymised parties depending on use-case.
    • A new PartyAndCertificate class has been added which aggregates a Party along with an X.509 certificate and certificate path back to a network trust root. This is used where a Party and its proof of identity are required, for example in identity registration.
    • Names of parties are now stored as a X500Name rather than a String, to correctly enforce basic structure of the name. As a result all node legal names must now be structured as X.500 distinguished names.
  • The identity management service takes an optional network trust root which it will validate certificate paths to, if provided. A later release will make this a required parameter.

  • There are major changes to transaction signing in flows:

    • You should use the new CollectSignaturesFlow and corresponding SignTransactionFlow which handle most of the details of this for you. They may get more complex in future as signing becomes a more featureful operation. ServiceHub.legalIdentityKey no longer returns a KeyPair, it instead returns just the PublicKey portion of this pair. The ServiceHub.notaryIdentityKey has changed similarly. The goal of this change is to keep private keys encapsulated and away from most flow code/Java code, so that the private key material can be stored in HSMs and other key management devices.
    • The KeyManagementService no longer provides any mechanism to request the node's PrivateKey objects directly. Instead signature creation occurs in the KeyManagementService.sign, with the PublicKey used to indicate which of the node's keypairs to use. This lookup also works for CompositeKey scenarios and the service will search for a leaf key hosted on the node.
    • The KeyManagementService.freshKey method now returns only the PublicKey portion of the newly generated KeyPair with the PrivateKey kept internally to the service.
    • Flows which used to acquire a node's KeyPair, typically via ServiceHub.legalIdentityKey, should instead use the helper methods on ServiceHub. In particular to freeze a TransactionBuilder and generate an initial partially signed SignedTransaction the flow should use ServiceHub.toSignedTransaction. Flows generating additional party signatures should use ServiceHub.createSignature. Each of these methods is provided with two signatures. One version that signs with the default node key, the other which allows key selection by passing in the PublicKey partner of the desired signing key.
    • The original KeyPair signing methods have been left on the TransactionBuilder and SignedTransaction, but should only be used as part of unit testing.
  • Timestamp used for validation/notarization time-range has been renamed to TimeWindow.

    There are now 4 factory methods TimeWindow.fromOnly(fromTime: Instant), TimeWindow.untilOnly(untilTime: Instant), TimeWindow.between(fromTime: Instant, untilTime: Instant) and TimeWindow.withTolerance(time: Instant, tolerance: Duration). Previous constructors TimeWindow(fromTime: Instant, untilTime: Instant) and TimeWindow(time: Instant, tolerance: Duration) have been removed.

  • The Bouncy Castle library X509CertificateHolder class is now used in place of X509Certificate in order to have a consistent class used internally. Conversions to/from X509Certificate are done as required, but should be avoided where possible.

  • The certificate hierarchy has been changed in order to allow corda node to sign keys with proper certificate chain.
    • The corda node will now be issued a restricted client CA for identity/transaction key signing.
    • TLS certificate are now stored in sslkeystore.jks and identity keys are stored in nodekeystore.jks

Warning

The old keystore will need to be removed when upgrading to this version.

Milestone 11.1

  • Fix serialisation error when starting a flow.
  • Automatically whitelist subclasses of InputStream when serialising.
  • Fix exception in DemoBench on Windows when loading CorDapps into the Node Explorer.
  • Detect when localhost resolution is broken on MacOSX, and provide instructions on how to fix it.

Milestone 11.0

  • API changes:
    • Added extension function Database.transaction to replace databaseTransaction, which is now deprecated.

    • Starting a flow no longer enables progress tracking by default. To enable it, you must now invoke your flow using one of the new CordaRPCOps.startTrackedFlow functions. FlowHandle is now an interface, and its progress: Observable field has been moved to the FlowProgressHandle child interface. Hence developers no longer need to invoke notUsed on their flows' unwanted progress-tracking observables.

    • Moved generateSpend and generateExit functions into OnLedgerAsset from the vault and AbstractConserveAmount clauses respectively.

    • Added CompositeSignature and CompositeSignatureData as part of enabling java.security classes to work with composite keys and signatures.

    • CompositeKey now implements java.security.PublicKey interface, so that keys can be used on standard classes such as Certificate.

      • There is no longer a need to transform single keys into composite - composite extension was removed, it is imposible to create CompositeKey with only one leaf.
      • Constructor of CompositeKey class is now private. Use CompositeKey.Builder to create a composite key. Keys emitted by the builder are normalised so that it's impossible to create a composite key with only one node. (Long chains of single nodes are shortened.)
      • Use extension function PublicKeys.keys to access all keys belonging to an instance of PublicKey. For a CompositeKey, this is equivalent to CompositeKey.leafKeys.
      • Introduced containsAny, isFulfilledBy, keys extension functions on PublicKey - CompositeKey type checking is done there.
  • Corda now requires JDK 8u131 or above in order to run. Our Kotlin now also compiles to JDK8 bytecode, and so you'll need to update your CorDapp projects to do the same. E.g. by adding this to build.gradle:
tasks.withType(org.jetbrains.kotlin.gradle.tasks.KotlinCompile).all {
kotlinOptions {

languageVersion = "1.1" apiVersion = "1.1" jvmTarget = "1.8"

}

}

  • DemoBench is now installed as Corda DemoBench instead of DemoBench.
  • Rewrote standard test identities to have full X.500 distinguished names. As part of this work we standardised on a smaller set of test identities, to reduce risk of subtle differences (i.e. similar common names varying by whitespace) in naming making it hard to diagnose issues.

Milestone 10.0

Special thank you to Qian Hong, Marek Skocovsky, Karel Hajek, and Jonny Chiu for their contributions to Corda in M10.

Warning

Due to incompatibility between older version of IntelliJ and gradle 3.4, you will need to upgrade Intellij to 2017.1 (with kotlin-plugin v1.1.1) in order to run Corda demos in IntelliJ. You can download the latest IntelliJ from JetBrains.

Warning

The Kapt-generated models are no longer included in our codebase. If you experience unresolved references errors when building in IntelliJ, please rebuild the schema model by running gradlew kaptKotlin in Windows or ./gradlew kaptKotlin in other systems. Alternatively, perform a full gradle build or install.

Note

Kapt is used to generate schema model and entity code (from annotations in the codebase) using the Kotlin Annotation processor.

  • Corda DemoBench:
    • DemoBench is a new tool to make it easy to configure and launch local Corda nodes. A very useful tool to demonstrate to your colleagues the fundamentals of Corda in real-time. It has the following features:

      • Clicking "Add node" creates a new tab that lets you edit the most important configuration properties of the node before launch, such as its legal name and which CorDapps will be loaded.
      • Each tab contains a terminal emulator, attached to the pseudoterminal of the node. This lets you see console output.
      • You can launch an Corda Explorer instance for each node via the DemoBench UI. Credentials are handed to the Corda Explorer so it starts out logged in already.
      • Some basic statistics are shown about each node, informed via the RPC connection.
      • Another button launches a database viewer in the system browser.
      • The configurations of all running nodes can be saved into a single .profile file that can be reloaded later.
    • Download Corda DemoBench.

  • Vault:
    • Soft Locking is a new feature implemented in the vault which prevent a node constructing transactions that attempt to use the same input(s) simultaneously.
    • Such transactions would result in naturally wasted effort when the notary rejects them as double spend attempts.
    • Soft locks are automatically applied to coin selection (eg. cash spending) to ensure that no two transactions attempt to spend the same fungible states.
  • Corda Shell :
    • The shell lets developers and node administrators easily command the node by running flows, RPCs and SQL queries.
    • It provides a variety of commands to monitor the node.
    • The Corda Shell is based on the popular CRaSH project and new commands can be easily added to the node by simply dropping Groovy or Java files into the node's shell-commands directory.
    • We have many enhancements planned over time including SSH access, more commands and better tab completion.
  • API changes:
    • The new Jackson module provides JSON/YAML serialisers for common Corda datatypes. If you have previously been using the JSON support in the standalone web server, please be aware that Amounts are now serialised as strings instead of { quantity, token } pairs as before. The old format is still accepted, but the new JSON will be produced using strings like "1000.00 USD" when writing. You can use any format supported by Amount.parseCurrency as input.
    • We have restructured client package in this milestone.
      • CordaClientRPC is now in the new :client:rpc module.
      • The old :client module has been split up into :client:jfx and :client:mock.
      • We also have a new :node-api module (package net.corda.nodeapi) which contains the shared code between node and client.
    • The basic Amount API has been upgraded to have support for advanced financial use cases and to better integrate with currency reference data.
  • Configuration:
    • Replace artemisPort with p2pPort in Gradle configuration.
    • Replace artemisAddress with p2pAddress in node configuration.
    • Added rpcAddress in node configuration for non-ssl RPC connection.
  • Object Serialization:
    • Pool Kryo instances for efficiency.
  • RPC client changes:
    • RPC clients can now connect to the node without the need for SSL. This requires a separate port on the Artemis broker, SSL must not be used for RPC connection.
    • CordaRPCClient now needs to connect to rpcAddress rather than p2pAddress.
  • Dependencies changes:
    • Upgraded Kotlin to v1.1.1.
    • Upgraded Gradle to v3.4.1.
    • Upgraded requery to v1.2.1.
    • Upgraded H2 to v1.4.194.
    • Replaced kotlinx-support-jdk8 with kotlin-stdlib-jre8.
  • Improvements:
    • Added --version command line flag to print the version of the node.
    • Flows written in Java can now execute a sub-flow inside UntrustworthyData.unwrap.
    • Added optional out-of-process transaction verification. Any number of external verifier processes may be attached to the node which can handle loadbalanced verification requests.
  • Bug fixes:
    • --logging-level command line flag was previously broken, now correctly sets the logging level.
    • Fixed bug whereby Cash Exit was not taking into account the issuer reference.

Milestone 9.1

  • Correct web server ports for IRS demo.
  • Correct which corda-webserver JAR is published to Maven.

Milestone 9

  • With thanks to Thomas Schroeter for the Byzantine fault tolerant (BFT) notary prototype.

  • Web server is a separate JAR. This is a breaking change. The new webserver JAR (corda-webserver.jar) must be invoked separately to node startup, using the commandjava -jar corda-webserver.jar in the same directory as the node.conf. Further changes are anticipated in upcoming milestone releases.

  • API:

    • Pseudonymous AnonymousParty class added as a superclass of Party.
    • Split CashFlow into individual CashIssueFlow, CashPaymentFlow and CashExitFlow flows, so that fine grained permissions can be applied. Added CashFlowCommand for use-cases where cash flow triggers need to be captured in an object that can be passed around.
    • CordaPluginRegistry method registerRPCKryoTypes is renamed customizeSerialization and the argument types now hide the presence of Kryo.
    • New extension functions for encoding/decoding to base58, base64, etc. See core/src/main/kotlin/net/corda/core/crypto/EncodingUtils.kt
    • Add openAttachment function to Corda RPC operations, for downloading an attachment from a node's data storage.
    • Add getCashBalances function to Corda RPC operations, for getting cash balances from a node's vault.
  • Configuration:
    • extraAdvertisedServiceIds config is now a list of strings, rather than a comma separated string. For example [ "corda.interest_rates" ] instead of "corda.interest_rates".
  • Flows:
    • Split CashFlow into separate CashIssueFlow, CashPaymentFlow and CashExitFlow so that permissions can be assigned individually.
    • Split single example user into separate "bankUser" and "bigCorpUser" so that permissions for the users make sense rather than being a combination of both roles.
    • ProgressTracker emits exception thrown by the flow, allowing the ANSI renderer to correctly stop and print the error
  • Object Serialization:

    • Consolidated Kryo implementations across RPC and P2P messaging with whitelisting of classes via plugins or with @CordaSerializable for added node security.
  • Privacy:
    • Non-validating notary service now takes in a FilteredTransaction so that no potentially sensitive transaction details are unnecessarily revealed to the notary
  • General:
    • Add vault service persistence using Requery
    • Certificate signing utility output is now more verbose

Milestone 8

  • Node memory usage and performance improvements, demo nodes now only require 200 MB heap space to run.

  • The Corda node no longer runs an internal web server, it's now run in a separate process. Driver and Cordformation have been updated to reflect this change. Existing CorDapps should be updated with additional calls to the new startWebserver() interface in their Driver logic (if they use the driver e.g. in integration tests). See the IRS demo for an example.

  • Data model: Party equality is now based on the owning key, rather than the owning key and name. This is important for party anonymisation to work, as each key must identify exactly one party.

  • Contracts: created new composite clauses called AllOf, AnyOf and FirstOf to replace AllComposition, AnyComposition and FirstComposition, as this is significantly clearer in intent. AnyOf also enforces that at least one subclause must match, whereas AnyComposition would accept no matches.

  • Explorer: the user can now configure certificate path and keystore/truststore password on the login screen.

  • Documentation:

    • Key Concepts section revamped with new structure and content.
    • Added more details to getting-set-up page.
  • Flow framework: improved exception handling with the introduction of FlowException. If this or a subtype is thrown inside a flow it will propagate to all counterparty flows and subsequently be thrown by them as well. Existing flows such as NotaryFlow.Client/Service and others have been modified to throw a FlowException (in this particular case a NotaryException) instead of sending back error responses.

  • Notary flow: provide complete details of underlying error when contract validation fails.

Milestone 7

  • With thanks to Thomas Schroeter NotaryFlow is now idempotent.

  • Explorer:

    • The GUI for the explorer now shows other nodes on the network map and the transactions between them.
    • Map resolution increased and allows zooming and panning.
    • Video demonstration of the Node Explorer.
  • The CorDapp template now has a Java example that parallels the Kotlin one for developers more comfortable with Java. ORM support added to the Kotlin example.

  • Demos:

    • Added the Bank of Corda demo - a demo showing a node (Bank of Corda) acting as an issuer of Cash, and a client driver providing both Web and RPC access to request issuance of cash.
    • Demos now use RPC to communicate with the node from the webserver. This brings the demos more in line with how interaction with nodes is expected to be. The demos now treat their webservers like clients. This will also allow for the splitting of the webserver from the node for milestone 8.
    • Added a SIMM valuation demo integration test to catch regressions.
  • Security:

    • MQ broker of the node now requires authentication which means that third parties cannot connect to and listen to queues on the Node. RPC and P2P between nodes is now authenticated as a result of this change. This also means that nodes or RPC users cannot pretend to be other nodes or RPC users.
    • The node now does host verification of any node that connects to it and prevents man in the middle attacks.
  • Improvements:

    • Vault updates now contain full StateAndRef which allows subscribers to check whether the update contains relevant states.
    • Cash balances are calculated using aggregate values to prevent iterating through all states in the vault, which improves performance.
    • Multi-party services, such as notaries, are now load balanced and represented as a single Party object.
    • The Notary Change flow now supports encumbrances.

Milestone 6

  • Added the Corda technical white paper. Note that its current version is 0.5 to reflect the fact that the Corda design is still evolving. Although we expect only relatively small tweaks at this point, when Corda reaches 1.0 so will the white paper.

  • Major documentation restructuring and new content:

    • More details on Corda node internals.
    • New CorDapp tutorial.
    • New tutorial on building transactions.
    • New tutorials on how to run and use a notary service.
  • An experimental version of the deterministic JVM sandbox has been added. It is not integrated with the node and will undergo some significant changes in the coming releases before it is integrated, as the code is finished, as bugs are found and fixed, and as the platform subset we choose to expose is finalised. Treat this as an outline of the basic approach rather than something usable for production.

  • Developer experience:

    • Samples have been merged back into the main repository. All samples can now be run via command line or IntelliJ.
    • Added a Client RPC python example.
    • Node console output now displays concise startup information, such as startup time or web address. All logging to the console is suppressed apart from errors and flow progress tracker steps. It can be re-enabled by passing --log-to-console command line parameter. Note that the log file remains unchanged and will still contain all log entries.
    • The runnodes scripts generated by the Gradle plugins now open each node in separate terminal windows or (on macOS) tabs.
    • A much more complete template app.
    • JARs now available on Maven Central.
  • Data model: A party is now identified by a composite key (formerly known as a "public key tree") instead of a single public key. Read more in composite-keys. This allows expressing distributed service identities, e.g. a distributed notary. In the future this will also allow parties to use multiple signing keys for their legal identity.

  • Decentralised consensus: A prototype RAFT based notary composed of multiple nodes has been added. This implementation is optimised for high performance over robustness against malicious cluster members, which may be appropriate for some financial situations.

  • Node explorer app:

    • New theme aligned with the Corda branding.
    • The New Transaction screen moved to the Cash View (as it is used solely for cash transactions)
    • Removed state machine/flow information from Transaction table. A new view for this will be created in a future release.
    • Added a new Network View that displays details of all nodes on the network.
    • Users can now configure the reporting currency in settings.
    • Various layout and performance enhancements.
  • Client RPC:

    • Added a generic startFlow method that enables starting of any flow, given sufficient permissions.
    • Added the ability for plugins to register additional classes or custom serialisers with Kryo for use in RPC.
    • rpc-users.properties file has been removed with RPC user settings moved to the config file.
  • Configuration changes: It is now possible to specify a custom legal name for any of the node's advertised services.

  • Added a load testing framework which allows stress testing of a node cluster, as well as specifying different ways of disrupting the normal operation of nodes. See loadtesting.

  • Improvements to the experimental contract DSL, by Sofus Mortensen of Nordea Bank (please give Nordea a shoutout too).

API changes:

  • The top level package has been renamed from com.r3corda to net.corda.
  • Protocols have been renamed to "flows".
  • OpaqueBytes now uses bytes as the field name rather than bits.

Milestone 5

  • A simple RPC access control mechanism. Users, passwords and permissions can be defined in a configuration file. This mechanism will be extended in future to support standard authentication systems like LDAP.

  • New features in the explorer app and RPC API for working with cash:

    • Cash can now be sent, issued and exited via RPC.
    • Notes can now be associated with transactions.
    • Hashes are visually represented using identicons.
    • Lots of functional work on the explorer UI. You can try it out by running gradle tools:explorer:runDemoNodes to run a local network of nodes that swap cash with each other, and then run gradle tools:explorer:run to start the app.
  • A new demo showing shared valuation of derivatives portfolios using the ISDA SIMM has been added. Note that this app relies on a proprietary implementation of the ISDA SIMM business logic from OpenGamma. A stub library is provided to ensure it compiles but if you want to use the app for real please contact us.

  • Developer experience (we plan to do lots more here in milestone 6):

    • Demos and samples have been split out of the main repository, and the initial developer experience continues to be refined. All necessary JARs can now be installed to Maven Local by simply running gradle install.
    • It's now easier to define a set of nodes to run locally using the new "CordFormation" gradle plugin, which defines a simple DSL for creating networks of nodes.
    • The template CorDapp has been upgraded with more documentation and showing more features.
  • Privacy: transactions are now structured as Merkle trees, and can have sections "torn off" - presented for verification and signing without revealing the rest of the transaction.

  • Lots of bug fixes, tweaks and polish starting the run up to the open source release.

API changes:

  • Plugin service classes now take a PluginServiceHub rather than a ServiceHubInternal.
  • UniqueIdentifier equality has changed to only take into account the underlying UUID.
  • The contracts module has been renamed to finance, to better reflect what it is for.

Milestone 4

New features in this release:

  • Persistence:

    • States can now be written into a relational database and queried using JDBC. The schemas are defined by the smart contracts and schema versioning is supported. It is reasonable to write an app that stores data in a mix of global ledger transactions and local database tables which are joined on demand, using join key slots that are present in many state definitions. Read more about api-persistence.
    • The embedded H2 SQL database is now exposed by default to any tool that can speak JDBC. The database URL is printed during node startup and can be used to explore the database, which contains both node internal data and tables generated from ledger states.
    • Protocol checkpoints are now stored in the database as well. Message processing is now atomic with protocol checkpointing and run under the same RDBMS transaction.
    • MQ message deduplication is now handled at the app layer and performed under the RDMS transaction, so ensuring messages are only replayed if the RDMS transaction rolled back.
    • "The wallet" has been renamed to "the vault".
  • Client RPC:

    • New RPCs added to subscribe to snapshots and update streams state of the vault, currently executing protocols and other important node information.
    • New tutorial added that shows how to use the RPC API to draw live transaction graphs on screen.
  • Protocol framework:

    • Large simplifications to the API. Session management is now handled automatically. Messages are now routed based on identities rather than node IP addresses.
  • Decentralised consensus:

    • A standalone one-node notary backed by a JDBC store has been added.
    • A prototype RAFT based notary composed of multiple nodes is available on a branch.
  • Data model:

    • Compound keys have been added as preparation for merging a distributed RAFT based notary. Compound keys are trees of public keys in which interior nodes can have validity thresholds attached, thus allowing boolean formulas of keys to be created. This is similar to Bitcoin's multi-sig support and the data model is the same as the InterLedger Crypto-Conditions spec, which should aid interop in future. Read more about key trees in the "api-core-types" article.
    • A new tutorial has been added showing how to use transaction attachments in more detail.
  • Testnet

    • Permissioning infrastructure phase one is built out. The node now has a notion of developer mode vs normal mode. In developer mode it works like M3 and the SSL certificates used by nodes running on your local machine all self-sign using a developer key included in the source tree. When developer mode is not active, the node won't start until it has a signed certificate. Such a certificate can be obtained by simply running an included command line utility which generates a CSR and submits it to a permissioning service, then waits for the signed certificate to be returned. Note that currently there is no public Corda testnet, so we are not currently running a permissioning service.
  • Standalone app development:

    • The Corda libraries that app developers need to link against can now be installed into your local Maven repository, where they can then be used like any other JAR. See running-a-node.
  • User interfaces:

    • Infrastructure work on the node explorer is now complete: it is fully switched to using the MQ based RPC system.
    • A library of additional reactive collections has been added. This API builds on top of Rx and the observable collections API in Java 8 to give "live" data structures in which the state of the node and ledger can be viewed as an ordinary Java List, Map and Set, but which also emit callbacks when these views change, and which can have additional views derived in a functional manner (filtered, mapped, sorted, etc). Finally, these views can then be bound directly into JavaFX UIs. This makes for a concise and functional way of building application UIs that render data from the node, and the API is available for third party app developers to use as well. We believe this will be highly productive and enjoyable for developers who have the option of building JavaFX apps (vs web apps).
    • The visual network simulator tool that was demoed back in April as part of the first Corda live demo has been merged into the main repository.
  • Documentation

    • New secure coding guidelines. Corda tries to eliminate as many security mistakes as practical via the type system and other mechanically checkable processes, but there are still things that one must be aware of.
    • New attachments tutorial.
    • New Client RPC tutorial.
    • More tutorials on how to build a standalone CorDapp.
  • Testing

    • More integration testing support
    • New micro-DSLs for expressing expected sequences of operations with more or less relaxed ordering constraints.
    • QuickCheck generators to create streams of randomised transactions and other basic types. QuickCheck is a way of writing unit tests that perform randomised fuzz testing of code, originally developed by the Haskell community and now also available in Java.

API changes:

  • The transaction types (Signed, Wire, LedgerTransaction) have moved to net.corda.core.transactions. You can update your code by just deleting the broken import lines and letting your IDE re-import them from the right location.
  • AbstractStateReplacementProtocol.verifyProposal has changed its prototype in a minor way.
  • The UntrustworthyData<T>.validate method has been renamed to unwrap - the old name is now deprecated.
  • The wallet, wallet service, etc. are now vault, vault service, etc. These better reflect the intent that they are a generic secure data store, rather than something which holds cash.
  • The protocol send/receive APIs have changed to no longer require a session id. Please check the current version of the protocol framework tutorial for more details.

Milestone 3

  • More work on preparing for the testnet:

    • Corda is now a standalone app server that loads "CorDapps" into itself as plugins. Whilst the existing IRS and trader demos still exist for now, these will soon be removed and there will only be a single Corda node program. Note that the node is a single, standalone jar file that is easier to execute than the demos.
    • Project Vega (shared SIMM modelling for derivative portfolios) has already been converted to be a CorDapp.
    • Significant work done on making the node persist its wallet data to a SQL backend, with more on the way.
    • Upgrades and refactorings of the core transaction types in preparation for the incoming sandboxing work.
  • The Clauses API that seeks to make writing smart contracts easier has gone through another design iteration, with the result that clauses are now cleaner and more composable.

  • Improvements to the protocol API for finalising transactions (notarising, transmitting and storing).

  • Lots of work done on an MQ based client API.

  • Improvements to the developer site:

    • The developer site has been re-read from start to finish and refreshed for M3 so there should be no obsolete texts or references anywhere.
    • The Corda non-technical white paper is now a part of the developer site and git repository. The LaTeX source is also provided so if you spot any issues with it, you can send us patches.
    • There is a new section on how to write CorDapps.
  • Further R&D work by Sofus Mortensen in the experimental module on a new 'universal' contract language.

  • SSL for the REST API and webapp server can now be configured.

Milestone 2

  • Big improvements to the interest rate swap app:

    • A new web app demonstrating the IRS contract has been added. This can be used as an example for how to interact with the Corda API from the web.
    • Simplifications to the way the demo is used from the command line.
    • Detailed documentation on how the contract works and can be used <contract-irs> has been written.
    • Better integration testing of the app.
  • Smart contracts have been redesigned around reusable components, referred to as "clauses". The cash, commercial paper and obligation contracts now share a common issue clause.

  • New code in the experimental module (note that this module is a place for work-in-progress code which has not yet gone through code review and which may, in general, not even function correctly):

    • Thanks to the prolific Sofus Mortensen @ Nordea Bank, an experimental generic contract DSL that is based on the famous 2001 "Composing contracts" paper has been added. We thank Sofus for this great and promising research, which is so relevant in the wake of the DAO hack.

    • The contract code from the recent trade finance demos is now in experimental. This code comes thanks to a collaboration of the members; all credit to:

      • Mustafa Ozturk @ Natixis
      • David Nee @ US Bank
      • Johannes Albertsen @ Dankse Bank
      • Rui Hu @ Nordea
      • Daniele Barreca @ Unicredit
      • Sukrit Handa @ Scotiabank
      • Giuseppe Cardone @ Banco Intesa
      • Robert Santiago @ BBVA
  • The usability of the command line demo programs has been improved.

  • All example code and existing contracts have been ported to use the new Java/Kotlin unit testing domain-specific languages (DSLs) which make it easy to construct chains of transactions and verify them together. This cleans up and unifies the previous ad-hoc set of similar DSLs. A tutorial on how to use it has been added to the documentation. We believe this largely completes our testing story for now around smart contracts. Feedback from bank developers during the Trade Finance project has indicated that the next thing to tackle is docs and usability improvements in the protocols API.

  • Significant work done towards defining the "CorDapp" concept in code, with dynamic loading of API services and more to come.

  • Inter-node communication now uses SSL/TLS and AMQP/1.0, albeit without all nodes self-signing at the moment. A real PKI for the p2p network will come later.

  • Logging is now saved to files with log rotation provided by Log4J.

API changes:

  • Some utility methods and extension functions that are specific to certain contract types have moved packages: just delete the import lines that no longer work and let IntelliJ replace them with the correct package paths.
  • The arg method in the test DSL is now called command to be consistent with the rest of the data model.
  • The messaging APIs have changed somewhat to now use a new TopicSession object. These APIs will continue to change in the upcoming releases.
  • Clauses now have default values provided for ifMatched, ifNotMatched and requiredCommands.

New documentation:

  • contract-catalogue
  • contract-irs
  • tutorial-test-dsl

Milestone 1

Highlights of this release:

  • Event scheduling. States in the ledger can now request protocols to be invoked at particular times, for states considered relevant by the wallet.

  • Upgrades to the notary/consensus service support:

    • There is now a way to change the notary controlling a state.
    • You can pick between validating and non-validating notaries, these let you select your privacy/robustness tradeoff.
  • A new obligation contract that supports bilateral and multilateral netting of obligations, default tracking and more.

  • Improvements to the financial type system, with core classes and contracts made more generic.

  • Switch to a better digital signature algorithm: ed25519 instead of the previous JDK default of secp256r1.

  • A new integration test suite.

  • A new Java unit testing DSL for contracts, similar in spirit to the one already developed for Kotlin users (which depended on Kotlin specific features).

  • An experimental module, where developers who want to work with the latest Corda code can check in contracts/cordapp code before it's been fully reviewed. Code in this module has compiler warnings suppressed but we will still make sure it compiles across refactorings.

  • Persistence improvements: transaction data is now stored to disk and automatic protocol resume is now implemented.

  • Many smaller bug fixes, cleanups and improvements.

We have new documentation on:

  • event-scheduling
  • api-core-types
  • key-concepts-consensus

Summary of API changes (not exhaustive):

  • Notary/consensus service:

    • NotaryService is now extensible.
    • Every ContractState now has to specify a participants field, which is a list of parties that are able to consume this state in a valid transaction. This is used for e.g. making sure all relevant parties obtain the updated state when changing a notary.
    • Introduced TransactionState, which wraps ContractState, and is used when defining a transaction output. The notary field is moved from ContractState into TransactionState.
    • Every transaction now has a type field, which specifies custom build & validation rules for that transaction type. Currently two types are supported: General (runs the default build and validation logic) and NotaryChange ( contract code is not run during validation, checks that the notary field is the only difference between the inputs and outputs). TransactionBuilder() is now abstract, you should use TransactionType.General.Builder() for building transactions.
  • The cash contract has moved from net.corda.contracts to net.corda.contracts.cash

  • Amount class is now generic, to support non-currency types such as physical assets. Where you previously had just Amount, you should now use Amount<Currency>.

  • Refactored the Cash contract to have a new FungibleAsset superclass, to model all countable assets that can be merged and split (currency, barrels of oil, etc.)

  • Messaging:

    • addMessageHandler now has a different signature as part of error handling changes.
    • If you want to return nothing to a protocol, use Ack instead of Unit from now on.
  • In the IRS contract, dateOffset is now an integer instead of an enum.

  • In contracts, you now use tx.getInputs and tx.getOutputs instead of getInStates and getOutStates. This is just a renaming.

  • A new NonEmptySet type has been added for cases where you wish to express that you have a collection of unique objects which cannot be empty.

  • Please use the global newSecureRandom() function rather than instantiating your own SecureRandom's from now on, as the custom function forces the use of non-blocking random drivers on Linux.

Milestone 0

This is the first release, which includes:

  • Some initial smart contracts: cash, commercial paper, interest rate swaps
  • An interest rate oracle
  • The first version of the protocol/orchestration framework
  • Some initial support for pluggable consensus mechanisms
  • Tutorials and documentation explaining how it works
  • Much more ...