mirror of
https://github.com/corda/corda.git
synced 2025-01-14 16:59:52 +00:00
c41960520c
* First pass Update test. Address review comments. Added docs and kdocs. Clean-up. * Addressed review comments. Changes to docsite. * First pass at account service. Added new hibernate schemas and liquibase scripts. Added indexes to new tables. Removed mock network. Removed fresh key for external id from key management service. Removed some redundant changes. Rebase to master. * Clean up. * Added try/catch block as recommended by Andras. * Removed accounts test to another branch. Removed element collections from fungible states and linear states table. Added a new state_parties table which stores x500 names and public key hashes. Added a view which can be used to query by external ID. * Removed try catch block. It's not required as the checkpoint serialiser deals with this. Re-used existing DB session instead of creating a new session. Entity manager auto flushes. * Added java friendly api. * This is a combination of 10 commits. This is the 1st commit message: Shortened table name. This is the commit message #2: Minor changes. This is the commit message #3: Common criteria parser now returns a predicate set which is concatenated to the predicate sets of sub-class criteria. This is the commit message #4: Fixed api compatibility issue. Reverted some changes to reduce size of PR. This is the commit message #5: Multiple states can now be mapped to the same externalId. Multiple externalIds can now be mapped to the same state. This is the commit message #6: Relaxed upper bound type constraint in some of the vault types. This is the commit message #7: Added comment to test. This is the commit message #8: Changed name of external id to public key join table. Removed some comments/TODOs. This is the commit message #9: Added docs. General clean up. This is the commit message #10: Fixed participants query bug and updated unit test. * Removed unused code.
254 lines
13 KiB
ReStructuredText
254 lines
13 KiB
ReStructuredText
.. highlight:: kotlin
|
|
.. raw:: html
|
|
|
|
<script type="text/javascript" src="_static/jquery.js"></script>
|
|
<script type="text/javascript" src="_static/codesets.js"></script>
|
|
|
|
API: Persistence
|
|
================
|
|
|
|
.. contents::
|
|
|
|
Corda offers developers the option to expose all or some part of a contract state to an *Object Relational Mapping*
|
|
(ORM) tool to be persisted in a RDBMS. The purpose of this is to assist *vault* development by effectively indexing
|
|
persisted contract states held in the vault for the purpose of running queries over them and to allow relational joins
|
|
between Corda data and private data local to the organisation owning a node.
|
|
|
|
The ORM mapping is specified using the `Java Persistence API <https://en.wikipedia.org/wiki/Java_Persistence_API>`_
|
|
(JPA) as annotations and is converted to database table rows by the node automatically every time a state is recorded
|
|
in the node's local vault as part of a transaction.
|
|
|
|
.. note:: Presently the node includes an instance of the H2 database but any database that supports JDBC is a
|
|
candidate and the node will in the future support a range of database implementations via their JDBC drivers. Much
|
|
of the node internal state is also persisted there. You can access the internal H2 database via JDBC, please see the
|
|
info in ":doc:`node-administration`" for details.
|
|
|
|
Schemas
|
|
-------
|
|
Every ``ContractState`` can implement the ``QueryableState`` interface if it wishes to be inserted into the node's local
|
|
database and accessible using SQL.
|
|
|
|
.. literalinclude:: ../../core/src/main/kotlin/net/corda/core/schemas/PersistentTypes.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART QueryableState
|
|
:end-before: DOCEND QueryableState
|
|
|
|
The ``QueryableState`` interface requires the state to enumerate the different relational schemas it supports, for
|
|
instance in cases where the schema has evolved, with each one being represented by a ``MappedSchema`` object return
|
|
by the ``supportedSchemas()`` method. Once a schema is selected it must generate that representation when requested
|
|
via the ``generateMappedObject()`` method which is then passed to the ORM.
|
|
|
|
Nodes have an internal ``SchemaService`` which decides what to persist and what not by selecting the ``MappedSchema``
|
|
to use.
|
|
|
|
.. literalinclude:: ../../node/src/main/kotlin/net/corda/node/services/api/SchemaService.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART SchemaService
|
|
:end-before: DOCEND SchemaService
|
|
|
|
.. literalinclude:: ../../core/src/main/kotlin/net/corda/core/schemas/PersistentTypes.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART MappedSchema
|
|
:end-before: DOCEND MappedSchema
|
|
|
|
The ``SchemaService`` can be configured by a node administrator to select the schemas used by each app. In this way the
|
|
relational view of ledger states can evolve in a controlled fashion in lock-step with internal systems or other
|
|
integration points and not necessarily with every upgrade to the contract code. It can select from the
|
|
``MappedSchema`` offered by a ``QueryableState``, automatically upgrade to a later version of a schema or even
|
|
provide a ``MappedSchema`` not originally offered by the ``QueryableState``.
|
|
|
|
It is expected that multiple different contract state implementations might provide mappings within a single schema.
|
|
For example an Interest Rate Swap contract and an Equity OTC Option contract might both provide a mapping to
|
|
a Derivative contract within the same schema. The schemas should typically not be part of the contract itself and should exist independently
|
|
to encourage re-use of a common set within a particular business area or Cordapp.
|
|
|
|
.. note:: It's advisable to avoid cross-references between different schemas as this may cause issues when evolving ``MappedSchema``
|
|
or migrating its data. At startup, nodes log such violations as warnings stating that there's a cross-reference between ``MappedSchema``'s.
|
|
The detailed messages incorporate information about what schemas, entities and fields are involved.
|
|
|
|
``MappedSchema`` offer a family name that is disambiguated using Java package style name-spacing derived from the
|
|
class name of a *schema family* class that is constant across versions, allowing the ``SchemaService`` to select a
|
|
preferred version of a schema.
|
|
|
|
The ``SchemaService`` is also responsible for the ``SchemaOptions`` that can be configured for a particular
|
|
``MappedSchema`` which allow the configuration of a database schema or table name prefixes to avoid any clash with
|
|
other ``MappedSchema``.
|
|
|
|
.. note:: It is intended that there should be plugin support for the ``SchemaService`` to offer the version upgrading
|
|
and additional schemas as part of Cordapps, and that the active schemas be configurable. However the present
|
|
implementation offers none of this and simply results in all versions of all schemas supported by a
|
|
``QueryableState`` being persisted. This will change in due course. Similarly, it does not currently support
|
|
configuring ``SchemaOptions`` but will do so in the future.
|
|
|
|
Custom schema registration
|
|
--------------------------
|
|
Custom contract schemas are automatically registered at startup time for CorDapps. The node bootstrap process will scan
|
|
for schemas (any class that extends the ``MappedSchema`` interface) in the `plugins` configuration directory in your CorDapp jar.
|
|
|
|
For testing purposes it is necessary to manually register the packages containing custom schemas as follows:
|
|
|
|
- Tests using ``MockNetwork`` and ``MockNode`` must explicitly register packages using the `cordappPackages` parameter of ``MockNetwork``
|
|
- Tests using ``MockServices`` must explicitly register packages using the `cordappPackages` parameter of the ``MockServices`` `makeTestDatabaseAndMockServices()` helper method.
|
|
|
|
.. note:: Tests using the `DriverDSL` will automatically register your custom schemas if they are in the same project structure as the driver call.
|
|
|
|
Object relational mapping
|
|
-------------------------
|
|
The persisted representation of a ``QueryableState`` should be an instance of a ``PersistentState`` subclass,
|
|
constructed either by the state itself or a plugin to the ``SchemaService``. This allows the ORM layer to always
|
|
associate a ``StateRef`` with a persisted representation of a ``ContractState`` and allows joining with the set of
|
|
unconsumed states in the vault.
|
|
|
|
The ``PersistentState`` subclass should be marked up as a JPA 2.1 *Entity* with a defined table name and having
|
|
properties (in Kotlin, getters/setters in Java) annotated to map to the appropriate columns and SQL types. Additional
|
|
entities can be included to model these properties where they are more complex, for example collections, so the mapping
|
|
does not have to be *flat*. The ``MappedSchema`` must provide a list of all of the JPA entity classes for that schema
|
|
in order to initialise the ORM layer.
|
|
|
|
Several examples of entities and mappings are provided in the codebase, including ``Cash.State`` and
|
|
``CommercialPaper.State``. For example, here's the first version of the cash schema.
|
|
|
|
.. literalinclude:: ../../finance/src/main/kotlin/net/corda/finance/schemas/CashSchemaV1.kt
|
|
:language: kotlin
|
|
|
|
.. note:: If Cordapp needs to be portable between Corda OS (running against H2) and Corda Enterprise (running against a standalone database),
|
|
consider database vendors specific requirements.
|
|
Ensure that table and column names are compatible with the naming convention of the database vendors for which the Cordapp will be deployed,
|
|
e.g. for Oracle database, prior to version 12.2 the maximum length of table/column name is 30 bytes (the exact number of characters depends on the database encoding).
|
|
|
|
Identity mapping
|
|
----------------
|
|
Schema entity attributes defined by identity types (``AbstractParty``, ``Party``, ``AnonymousParty``) are automatically
|
|
processed to ensure only the ``X500Name`` of the identity is persisted where an identity is well known, otherwise a null
|
|
value is stored in the associated column. To preserve privacy, identity keys are never persisted. Developers should use
|
|
the ``IdentityService`` to resolve keys from well know X500 identity names.
|
|
|
|
.. _jdbc_session_ref:
|
|
|
|
JDBC session
|
|
------------
|
|
Apps may also interact directly with the underlying Node's database by using a standard
|
|
JDBC connection (session) as described by the `Java SQL Connection API <https://docs.oracle.com/javase/8/docs/api/java/sql/Connection.html>`_
|
|
|
|
Use the ``ServiceHub`` ``jdbcSession`` function to obtain a JDBC connection as illustrated in the following example:
|
|
|
|
.. literalinclude:: ../../node/src/test/kotlin/net/corda/node/services/persistence/HibernateConfigurationTest.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART JdbcSession
|
|
:end-before: DOCEND JdbcSession
|
|
|
|
JDBC sessions can be used in flows and services (see ":doc:`flow-state-machines`").
|
|
|
|
The following example illustrates the creation of a custom Corda service using a ``jdbcSession``:
|
|
|
|
.. literalinclude:: ../../docs/source/example-code/src/main/kotlin/net/corda/docs/kotlin/vault/CustomVaultQuery.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART CustomVaultQuery
|
|
:end-before: DOCEND CustomVaultQuery
|
|
|
|
which is then referenced within a custom flow:
|
|
|
|
.. literalinclude:: ../../docs/source/example-code/src/main/kotlin/net/corda/docs/kotlin/vault/CustomVaultQuery.kt
|
|
:language: kotlin
|
|
:start-after: DOCSTART TopupIssuer
|
|
:end-before: DOCEND TopupIssuer
|
|
|
|
For examples on testing ``@CordaService`` implementations, see the oracle example :doc:`here <oracles>`.
|
|
|
|
JPA Support
|
|
-----------
|
|
In addition to ``jdbcSession``, ``ServiceHub`` also exposes the Java Persistence API to flows via the ``withEntityManager``
|
|
method. This method can be used to persist and query entities which inherit from ``MappedSchema``. This is particularly
|
|
useful if off-ledger data must be maintained in conjunction with on-ledger state data.
|
|
|
|
.. note:: Your entity must be included as a mappedType in as part of a MappedSchema for it to be added to Hibernate
|
|
as a custom schema. See Samples below.
|
|
|
|
The code snippet below defines a ``PersistentFoo`` type inside ``FooSchemaV1``. Note that ``PersistentFoo`` is added to
|
|
a list of mapped types which is passed to ``MappedSchema``. This is exactly how state schemas are defined, except that
|
|
the entity in this case should not subclass ``PersistentState`` (as it is not a state object). See examples:
|
|
|
|
.. container:: codeset
|
|
|
|
.. sourcecode:: java
|
|
|
|
public class FooSchema {}
|
|
|
|
public class FooSchemaV1 extends MappedSchema {
|
|
FooSchemaV1() {
|
|
super(FooSchema.class, 1, ImmutableList.of(PersistentFoo.class));
|
|
}
|
|
|
|
@Entity
|
|
@Table(name = "foos")
|
|
class PersistentFoo implements Serializable {
|
|
@Id
|
|
@Column(name = "foo_id")
|
|
String fooId;
|
|
|
|
@Column(name = "foo_data")
|
|
String fooData;
|
|
}
|
|
}
|
|
|
|
.. sourcecode:: kotlin
|
|
|
|
object FooSchema
|
|
|
|
object FooSchemaV1 : MappedSchema(schemaFamily = FooSchema.javaClass, version = 1, mappedTypes = listOf(PersistentFoo::class.java)) {
|
|
@Entity
|
|
@Table(name = "foos")
|
|
class PersistentFoo(@Id @Column(name = "foo_id") var fooId: String, @Column(name = "foo_data") var fooData: String) : Serializable
|
|
}
|
|
|
|
Instances of ``PersistentFoo`` can be persisted inside a flow as follows:
|
|
|
|
.. container:: codeset
|
|
|
|
.. sourcecode:: java
|
|
|
|
PersistentFoo foo = new PersistentFoo(new UniqueIdentifier().getId().toString(), "Bar");
|
|
serviceHub.withEntityManager(entityManager -> {
|
|
entityManager.persist(foo);
|
|
return null;
|
|
});
|
|
|
|
.. sourcecode:: kotlin
|
|
|
|
val foo = FooSchemaV1.PersistentFoo(UniqueIdentifier().id.toString(), "Bar")
|
|
serviceHub.withEntityManager {
|
|
persist(foo)
|
|
}
|
|
|
|
And retrieved via a query, as follows:
|
|
|
|
.. container:: codeset
|
|
|
|
.. sourcecode:: java
|
|
|
|
node.getServices().withEntityManager((EntityManager entityManager) -> {
|
|
CriteriaQuery<PersistentFoo> query = entityManager.getCriteriaBuilder().createQuery(PersistentFoo.class);
|
|
Root<PersistentFoo> type = query.from(PersistentFoo.class);
|
|
query.select(type);
|
|
return entityManager.createQuery(query).getResultList();
|
|
});
|
|
|
|
.. sourcecode:: kotlin
|
|
|
|
val result: MutableList<FooSchemaV1.PersistentFoo> = services.withEntityManager {
|
|
val query = criteriaBuilder.createQuery(FooSchemaV1.PersistentFoo::class.java)
|
|
val type = query.from(FooSchemaV1.PersistentFoo::class.java)
|
|
query.select(type)
|
|
createQuery(query).resultList
|
|
}
|
|
|
|
Please note that suspendable flow operations such as:
|
|
|
|
* ``FlowSession.send``
|
|
* ``FlowSession.receive``
|
|
* ``FlowLogic.receiveAll``
|
|
* ``FlowLogic.sleep``
|
|
* ``FlowLogic.subFlow``
|
|
|
|
Cannot be used within the lambda function passed to ``withEntityManager``.
|