mirror of
https://github.com/corda/corda.git
synced 2024-12-29 09:18:58 +00:00
d72d887224
* Fix BankOfCorda demo after services removal * Add CashConfigDataFlow permission to BankOfCorda * Address comments * Add permission
214 lines
13 KiB
ReStructuredText
214 lines
13 KiB
ReStructuredText
Running the demos
|
|
=================
|
|
|
|
The `Corda repository <https://github.com/corda/corda>`_ contains a number of demo programs demonstrating
|
|
Corda's functionality:
|
|
|
|
1. The Trader Demo, which shows a delivery-vs-payment atomic swap of commercial paper for cash
|
|
2. The IRS Demo, which shows two nodes establishing an interest rate swap and performing fixings with a
|
|
rates oracle
|
|
3. The Attachment Demo, which demonstrates uploading attachments to nodes
|
|
4. The Notary Demo, which shows three different types of notaries and a single node getting multiple transactions notarised.
|
|
5. The Bank of Corda Demo, which shows a node acting as an issuer of assets (the Bank of Corda) while remote client
|
|
applications request issuance of some cash on behalf of a node called Big Corporation
|
|
|
|
If any of the demos don't work, please raise an issue on GitHub.
|
|
|
|
.. note:: If you are running the demos from the command line in Linux (but not macOS), you may have to install xterm.
|
|
|
|
.. note:: If you would like to see flow activity on the nodes type in the node terminal ``flow watch``.
|
|
|
|
.. _trader-demo:
|
|
|
|
Trader demo
|
|
-----------
|
|
|
|
This demo brings up four nodes: Bank A, Bank B, Bank Of Corda, and a notary/network map node that they all use. Bank A will
|
|
be the buyer, and requests some cash from the Bank of Corda in order to acquire commercial paper from Bank B, the seller.
|
|
|
|
To run from the command line in Unix:
|
|
|
|
1. Run ``./gradlew samples:trader-demo:deployNodes`` to create a set of configs and installs under ``samples/trader-demo/build/nodes``
|
|
2. Run ``./samples/trader-demo/build/nodes/runnodes`` to open up four new terminals with the four nodes
|
|
3. Run ``./gradlew samples:trader-demo:runBank`` to instruct the bank node to issue cash and commercial paper to the buyer and seller nodes respectively.
|
|
4. Run ``./gradlew samples:trader-demo:runSeller`` to trigger the transaction. If you entered ``flow watch``
|
|
|
|
you can see flows running on both sides of transaction. Additionally you should see final trade information displayed
|
|
to your terminal.
|
|
|
|
To run from the command line in Windows:
|
|
|
|
1. Run ``gradlew samples:trader-demo:deployNodes`` to create a set of configs and installs under ``samples\trader-demo\build\nodes``
|
|
2. Run ``samples\trader-demo\build\nodes\runnodes`` to open up four new terminals with the four nodes
|
|
3. Run ``gradlew samples:trader-demo:runBank`` to instruct the buyer node to request issuance of some cash from the Bank of Corda node
|
|
4. Run ``gradlew samples:trader-demo:runSeller`` to trigger the transaction. If you entered ``flow watch``
|
|
|
|
you can see flows running on both sides of transaction. Additionally you should see final trade information displayed
|
|
to your terminal.
|
|
|
|
.. _irs-demo:
|
|
|
|
IRS demo
|
|
--------
|
|
|
|
This demo brings up three nodes: Bank A, Bank B and a node that simultaneously runs a notary, a network map and an interest rates
|
|
oracle. The two banks agree on an interest rate swap, and then do regular fixings of the deal as the time
|
|
on a simulated clock passes.
|
|
|
|
To run from the command line in Unix:
|
|
|
|
1. Run ``./gradlew samples:irs-demo:deployNodes`` to install configs and a command line tool under ``samples/irs-demo/build``
|
|
2. Run ``./gradlew samples:irs-demo:installDist``
|
|
3. Move to the ``samples/irs-demo/build`` directory
|
|
4. Run ``./nodes/runnodes`` to open up three new terminals with the three nodes (you may have to install xterm).
|
|
|
|
To run from the command line in Windows:
|
|
|
|
1. Run ``gradlew.bat samples:irs-demo:deployNodes`` to install configs and a command line tool under ``samples\irs-demo\build``
|
|
2. Run ``gradlew.bat samples:irs-demo:installDist``
|
|
3. Run ``cd samples\irs-demo\build`` to change current working directory
|
|
4. Run ``nodes\runnodes`` to open up several 6 terminals, 2 for each node. First terminal is a web-server associated with every node and second one is Corda interactive shell for the node.
|
|
|
|
This demo also has a web app. To use this, run nodes and then navigate to
|
|
http://localhost:10007/web/irsdemo and http://localhost:10010/web/irsdemo to see each node's view of the ledger.
|
|
|
|
To use the web app, click the "Create Deal" button, fill in the form, then click the "Submit" button. You can then
|
|
use the time controls at the top left of the home page to run the fixings. Click any individual trade in the blotter to view it.
|
|
|
|
.. note:: The IRS web UI currently has a bug when changing the clock time where it may show no numbers or apply fixings inconsistently.
|
|
The issues will be addressed in a future milestone release. Meanwhile, you can take a look at a simpler oracle example https://github.com/corda/oracle-example
|
|
|
|
Attachment demo
|
|
---------------
|
|
|
|
This demo brings up three nodes, and sends a transaction containing an attachment from one to the other.
|
|
|
|
To run from the command line in Unix:
|
|
|
|
1. Run ``./gradlew samples:attachment-demo:deployNodes`` to create a set of configs and installs under ``samples/attachment-demo/build/nodes``
|
|
2. Run ``./samples/attachment-demo/build/nodes/runnodes`` to open up three new terminal tabs/windows with the three nodes and webserver for BankB
|
|
3. Run ``./gradlew samples:attachment-demo:runRecipient``, which will block waiting for a trade to start
|
|
4. Run ``./gradlew samples:attachment-demo:runSender`` in another terminal window to send the attachment. Now look at the other windows to
|
|
see the output of the demo
|
|
|
|
To run from the command line in Windows:
|
|
|
|
1. Run ``gradlew samples:attachment-demo:deployNodes`` to create a set of configs and installs under ``samples\attachment-demo\build\nodes``
|
|
2. Run ``samples\attachment-demo\build\nodes\runnodes`` to open up three new terminal tabs/windows with the three nodes and webserver for BankB
|
|
3. Run ``gradlew samples:attachment-demo:runRecipient``, which will block waiting for a trade to start
|
|
4. Run ``gradlew samples:attachment-demo:runSender`` in another terminal window to send the attachment. Now look at the other windows to
|
|
see the output of the demo
|
|
|
|
.. _notary-demo:
|
|
|
|
Notary demo
|
|
-----------
|
|
|
|
This demo shows a party getting transactions notarised by either a single-node or a distributed notary service.
|
|
All versions of the demo start two counterparty nodes.
|
|
One of the counterparties will generate transactions that transfer a self-issued asset to the other party and submit them for notarisation.
|
|
The `Raft <https://raft.github.io/>`_ version of the demo will start three distributed notary nodes.
|
|
The `BFT SMaRt <https://bft-smart.github.io/library/>`_ version of the demo will start four distributed notary nodes.
|
|
|
|
The output will display a list of notarised transaction IDs and corresponding signer public keys. In the Raft distributed notary,
|
|
every node in the cluster can service client requests, and one signature is sufficient to satisfy the notary composite key requirement.
|
|
In the BFT SMaRt distributed notary, three signatures are required.
|
|
You will notice that successive transactions get signed by different members of the cluster (usually allocated in a random order).
|
|
|
|
To run the Raft version of the demo from the command line in Unix:
|
|
|
|
1. Run ``./gradlew samples:notary-demo:deployNodes``, which will create all three types of notaries' node directories
|
|
with configs under ``samples/notary-demo/build/nodes/nodesRaft`` (``nodesBFT`` and ``nodesSingle`` for BFT and
|
|
Single notaries).
|
|
2. Run ``./samples/notary-demo/build/nodes/nodesRaft/runnodes``, which will start the nodes in separate terminal windows/tabs.
|
|
Wait until a "Node started up and registered in ..." message appears on each of the terminals
|
|
3. Run ``./gradlew samples:notary-demo:notarise`` to make a call to the "Party" node to initiate notarisation requests
|
|
In a few seconds you will see a message "Notarised 10 transactions" with a list of transaction ids and the signer public keys
|
|
|
|
To run from the command line in Windows:
|
|
|
|
1. Run ``gradlew samples:notary-demo:deployNodes``, which will create all three types of notaries' node directories
|
|
with configs under ``samples/notary-demo/build/nodes/nodesRaft`` (``nodesBFT`` and ``nodesSingle`` for BFT and
|
|
Single notaries).
|
|
2. Run ``samples\notary-demo\build\nodes\nodesRaft\runnodes``, which will start the nodes in separate terminal windows/tabs.
|
|
Wait until a "Node started up and registered in ..." message appears on each of the terminals
|
|
3. Run ``gradlew samples:notary-demo:notarise`` to make a call to the "Party" node to initiate notarisation requests
|
|
In a few seconds you will see a message "Notarised 10 transactions" with a list of transaction ids and the signer public keys
|
|
|
|
To run the BFT SMaRt notary demo, use ``nodesBFT`` instead of ``nodesRaft`` in the path (you will see messages from notary nodes
|
|
trying to communicate each other sometime with connection errors, that's normal). For a single notary node, use ``nodesSingle``.
|
|
|
|
Notary nodes store consumed states in a replicated commit log, which is backed by a H2 database on each node.
|
|
You can ascertain that the commit log is synchronised across the cluster by accessing and comparing each of the nodes' backing stores
|
|
by using the H2 web console:
|
|
|
|
- Firstly, download `H2 web console <http://www.h2database.com/html/download.html>`_ (download the "platform-independent zip"),
|
|
and start it using a script in the extracted folder: ``h2/bin/h2.sh`` (or ``h2\bin\h2`` for Windows)
|
|
|
|
- If you are uncertain as to which version of h2 to install or if you have connectivity issues, refer to ``build.gradle``
|
|
located in the ``node`` directory and locate the compile step for ``com.h2database``. Use a client of the same
|
|
major version - even if still in beta.
|
|
|
|
- The H2 web console should start up in a web browser tab. To connect we first need to obtain a JDBC connection string.
|
|
Each node outputs its connection string in the terminal window as it starts up. In a terminal window where a node is running,
|
|
look for the following string:
|
|
|
|
``Database connection url is : jdbc:h2:tcp://10.18.0.150:56736/node``
|
|
|
|
You can use the string on the right to connect to the h2 database: just paste it into the `JDBC URL` field and click *Connect*.
|
|
You will be presented with a web application that enumerates all the available tables and provides an interface for you to query them using SQL
|
|
|
|
- The committed states are stored in the ``NOTARY_COMMITTED_STATES`` table. Note that the raw data is not human-readable,
|
|
but we're only interested in the row count for this demo
|
|
|
|
Bank Of Corda demo
|
|
------------------
|
|
|
|
This demo brings up three nodes: a notary, a node acting as the Bank of Corda that accepts requests for issuance of some asset
|
|
and a node acting as Big Corporation which requests issuance of an asset (cash in this example).
|
|
|
|
Upon receipt of a request the Bank of Corda node self-issues the asset and then transfers ownership to the requester
|
|
after successful notarisation and recording of the issue transaction on the ledger.
|
|
|
|
.. note:: The Bank of Corda is somewhat like a "Bitcoin faucet" that dispenses free bitcoins to developers for
|
|
testing and experimentation purposes.
|
|
|
|
To run from the command line in Unix:
|
|
|
|
1. Run ``./gradlew samples:bank-of-corda-demo:deployNodes`` to create a set of configs and installs under ``samples/bank-of-corda-demo/build/nodes``
|
|
2. Run ``./samples/bank-of-corda-demo/build/nodes/runnodes`` to open up three new terminal tabs/windows with the three nodes
|
|
3. Run ``./gradlew samples:bank-of-corda-demo:runRPCCashIssue`` to trigger a cash issuance request
|
|
4. Run ``./gradlew samples:bank-of-corda-demo:runWebCashIssue`` to trigger another cash issuance request.
|
|
Now look at your terminal tab/window to see the output of the demo
|
|
|
|
To run from the command line in Windows:
|
|
|
|
1. Run ``gradlew samples:bank-of-corda-demo:deployNodes`` to create a set of configs and installs under ``samples\bank-of-corda-demo\build\nodes``
|
|
2. Run ``samples\bank-of-corda-demo\build\nodes\runnodes`` to open up three new terminal tabs/windows with the three nodes
|
|
3. Run ``gradlew samples:bank-of-corda-demo:runRPCCashIssue`` to trigger a cash issuance request
|
|
4. Run ``gradlew samples:bank-of-corda-demo:runWebCashIssue`` to trigger another cash issuance request.
|
|
Now look at the your terminal tab/window to see the output of the demo
|
|
|
|
.. note:: To verify that the Bank of Corda node is alive and running, navigate to the following URL:
|
|
http://localhost:10007/api/bank/date
|
|
|
|
In the window you run the command you should see (in case of Web, RPC is simmilar):
|
|
|
|
- Requesting Cash via Web ...
|
|
- Successfully processed Cash Issue request
|
|
|
|
If you want to see flow activity enter in node's shell ``flow watch``. It will display all state machines
|
|
running currently on the node.
|
|
|
|
Launch the Explorer application to visualize the issuance and transfer of cash for each node:
|
|
|
|
``./gradlew tools:explorer:run`` (on Unix) or ``gradlew tools:explorer:run`` (on Windows)
|
|
|
|
Using the following login details:
|
|
|
|
- For the Bank of Corda node: localhost / port 10006 / username bankUser / password test
|
|
- For the Big Corporation node: localhost / port 10009 / username bigCorpUser / password test
|
|
|
|
See https://docs.corda.net/node-explorer.html for further details on usage.
|
|
|