The latter is cheaper (avoids a state transition and possible memory
allocation) when we just want to know if an exception is thrown
without needing a handle to that exception.
Before allocating a new reference in NewGlobalReference or when
creating a local reference, we look for a previously-allocated
reference pointing to the same object. This is a linear search, but
usually the number of elements in the reference list is small, whereas
the memory, locking, and allocation overhead of creating duplicate
references can be large.
We need to check to see if we caught the thread somewhere in the thunk
code (i.e. about to call a helper function), in which case the stack
and base pointers are valid and may be used to create an accurate
trace.
If another thread succeeds in entering the "exclusive" state while we
use the fast path to transition the current thread to "active", we
must switch back to "idle" temporarily to allow the exclusive thread a
chance to continue, and then retry the transition to "active" via the
slow path.
These paths reduce contention among threads by using atomic operations
and memory barriers instead of mutexes where possible. This is
especially important for JNI calls, since each such call involves two
state transitions: from "active" to "idle" and back.
Previously, we assumed that the "context" parameter to
GetThreadContext was only an output parameter, but it actually uses at
the value of CONTEXT::ContextFlags on entry to decide what parts of
the structure to fill in. We were getting lucking most of the time,
because whatever garbage was on the stack at that location had the
necessary bits set. When we weren't so lucky, we got all zeros for
the register values which sometimes lead to a crash depending on the
state of the thread being examined.