My last commit introduced a regression in JIT compilation of
subroutines. This reverts the specific change which caused the
regression. Further work will be needed to address the case which
that change was intended to fix (namely, exception handlers which
apply to multiple try/catch blocks).
Bytecode generated by compilers other than javac or ecj (such as
jython's dynamically generated classes) can contain unreachable code
and exception handlers which apply to more than one try/catch scope.
Previously, the VM's JIT compiler did not handle either of these cases
well, hence this commit.
Previously, we would abort the process if we encountered a truncated
multibyte character in parseUtf8NonAscii (called by the JNI method
NewStringUTF). Now we simply terminate the string at that point.
Also, assume any class which has an ancestor class which has a static
initializer needs initialization even if it doesn't have one itself,
per the Java Language Spec.
The result of Class.getInterfaces should not include interfaces
declared to be implemented/extended by superclasses/superinterfaces,
only those declared by the class itself. This is important because it
influences how java.io.ObjectStreamClass calculates serial version
IDs.
Some broken code implicitly relies on System.identityHashCode always
returning a non-negative number (e.g. old versions of
com/sun/xml/bind/v2/util/CollisionCheckStack.hash).
Code including subroutines and conditionals can result in frame and
register resources being held by values which aren't in scope when
resetFrame is called, so we need to clean them up after cleaning the
in-scope values.
OpenJDK's sun.reflect.MethodAccessorGenerator can generate
invokevirtual calls to private methods (which we normally consider
non-virtual); we must compile them as non-virtual calls since they
aren't in the vtable.
It turns out commit 31eb047 was too aggressive and led to incorrect
calculation of line numbers for machine addresses, as well as
potentially incorrect exception handler scope calculation. This fixes
the regression.
OpenJDK's java.lang.ClassLoader.getResource makes use of
sun.misc.Launcher to load bootstrap resources, which is not
appropriate for the Avian build, so we override it to ensure we get
the behavior we want.
This includes a proper implementation of JVM_ActiveProcessorCount, as
well as JVM_SetLength and JVM_NewMultiArray. Also, we now accept up
to JNI_VERSION_1_6 in JVM_IsSupportedJNIVersion.
I recently encountered a Batik JAR with a method containing a
redundant goto which confused the JIT compiler because it was refered
to in the exception handler and line number tables despite being
unreachable. I don't know how such code was generated, but this
commit ensures the compiler can handle it.
We must not allocate heap objects from doCollect, since it might
trigger a GC while one is already in progress, which can cause trouble
when we're still queuing up objects to finalize, among other things.
To avoid this, I've added extra fields to the finalizer and cleaner
types which we can use to link instances up during GC without
allocating new memory.
We can't blindly try release the monitors for all synchronized methods
when unwinding the stack since we may not have finished acquiring the
most recent one when the exception was thrown.
If we don't preallocate the memory we need to reacquire the lock after
we finish waiting, we risk an OOME which may unwind the stack into
code which assumes we still have acquire the lock successfully.
Instead of giving up when the backing allocator's tryAllocate method
returns null, we switch to the allocate method to show we mean
business. This makes use of zones more robust under low memory
situations since it allows us to exceed the soft memory ceiling when
the only alternative is to abort.
OpenJDK uses an alternative to Object.finalize for resource cleanup in
the form of sun.misc.Cleaner. Normally, OpenJDK's
java.lang.ref.Reference.ReferenceHandler thread handles this, calling
Cleaner.clean on any instances it finds in its "pending" queue.
However, Avian handles reference queuing internally, so it never
actually adds anything to that queue, so the VM must call
Cleaner.clean itself.
The main changes here are:
* fixes for runtime annotation support
* proper support for runtime generic type introspection
* throw NoClassDefFoundErrors instead of ClassNotFoundExceptions
where appropriate
It isn't necessarily safe or desireable to call the previous handler
even if it's non-null, so we ignore it entirely except to reinstate it
when unregistering our own handler.
Big applications can exceed the 16MB limit we previously used.
Increasing this above 30MB (if/when desired) will require changes to
the ARM and PowerPC JIT code to work around immediate branch encoding
limits on those platforms,