This monster commit is the first step towards supporting
cross-architecture bootimage builds. The challenge is to build a heap
and code image for the target platform where the word size and
endianess may differ from those of the build architecture. That means
the memory layout of objects may differ due to alignment and size
differences, so we can't just copy objects into the heap image
unchanged; we must copy field by field, resizing values, reversing
endianess and shifting offsets as necessary.
This commit also removes POD (plain old data) type support from the
type generator because it added a lot of complication and little
value.
Recent versions of Cygwin's GCC no longer support the -mno-cygwin flag
(compilation works, but linking fails). However, Cygwin now includes
mingw64-i686-gcc, mingw64-x86_64-gcc, and related packages, so we use
those compilers instead. This has the added benefit that we can build
native x86_64 binaries on Cygwin now.
This will break the build for old Cygwin installs, so it will be
necessary to upgrade Cygwin and install the aforementioned packages to
build Avian going forward.
Added JavaVM to include path. Also allow dynamically building with
different SDK versions through the OSX_SDK_VERSION and OSX_SDK_SYSROOT
environment variables (these default to the previosly hardcoded value of
10.4 and 10.4u respectively).
OpenJDK's compile.c and Avian's compile.cpp were both being compiled
to compile.o, which led to a conflict when building libavian.a. We
now append "-openjdk" to the object file name for OpenJDK code to
avoid such conflicts.
This primarily required additions to classpath-openjdk.cpp to
intercept ZipFile, ZipEntry, and JarFile native methods to consult
embedded encryption policy jars when required.
While we can use Linux's jni.h to cross compile the i386 Mac OS build,
that doesn't work for the PowerPC one. Now we use the proper
/System/Library/Frameworks/JavaVM.framework/Versions/1.5.0/Headers/jni.h
from the sysroot instead.
This test covers the case where a local stack slot is first used to
store an object reference and later to store a subroutine return
address. Unfortunately, this confuses the VM's stack mapping code;
I'll be working on a fix for that next.
The new test requires generating bytecode from scratch, since there's
no reliable way to get javac to generate the code we want. Since we
already had primitive bytecode construction code in Proxy.java, I
factored it out so we can reuse it in Subroutine.java.
This mainly involves some makefile ugliness to work around bugs in the
native Windows OpenJDK code involving conflicting static and
not-static declarations which GCC 4.0 and later justifiably reject but
MSVC tolerates.
* add libnet.so and libnio.so to built-in libraries for openjdk-src build
* implement sun.misc.Unsafe.park/unpark
* implement JVM_SetClassSigners/JVM_GetClassSigners
* etc.
The main change here is to use a lazily-populated vector to associate
runtime data with classes instead of referencing them directly from
the class which requires updating immutable references in the heap
image. The other changes employ other strategies to avoid trying to
update immutable references.
This makes heap dumps more useful since these classes are now refered
to by name instead of number.
This commit also adds a couple of utilities for parsing heap dumps:
PrintDump and DumpStats.
The primary change is to ensure we output a Mach-O file of appropriate
endianness when cross-compiling for an opposite-endian architecture.
Earlier versions of XCode's linker accepted files of either
endianness, reguardless of architecture, but later versions don't,
hence the change.
All the tests are passing for openjdk-src builds, but the non-src
openjdk build is crashing and there's trouble loading time zone info
from the embedded java.home directory.
This allows OpenJDK to access time zone data which is normally found
under java.home, but which we must embed in the executable itself to
create a self-contained build. The VM intercepts various file
operations, looking for paths which start with a prefix specified by
the avian.embed.prefix property and redirecting those operations to an
embedded JAR.
For example, if avian.embed.prefix is "/avian-embedded", and code
calls File.exists() with a path of
"/avian-embedded/javahomeJar/foo.txt", the VM looks for a function
named javahomeJar via dlsym, calls the function to find the memory
region containing the embeded JAR, and finally consults the JAR to see
if the file "foo.txt" exists.
As described in readme.txt, a standalone OpenJDK build embeds all
libraries, classes, and other files needed at runtime in the resulting
binary, eliminating dependencies on external resources.
Consider the following makefile construct:
target: dep0
target: dep1 dep2
command -o $(@) $(^)
With some versions of make, $(^) will expand to "dep1 dep2", but on
others it will expand to "dep0 dep1 dep2". The commit ensures that we
no longer rely on the former behavior (nor the latter, for that matter).
We now consult the JAVA_HOME environment variable to determine where
to find the system library JARs and SOs. Ultimately, we'll want to
support self-contained build, but this allows Avian to behave like a
conventional libjvm.so.
Previously, we only built platform specific code in an
options-specific directory (e.g. build/linux-x86_64-debug), but built
the Java classes in the shared, top-level build directory. This
minimized duplication when building with different sets of options,
but now that we're supporting the option of selecting a third-party
class library, we need to put the classes in the options-specific
directory as well.
The main changes in this commit ensure that we don't hold the global
class lock when doing class resolution using application-defined
classloaders. Such classloaders may do their own locking (in fact,
it's almost certain), making deadlock likely when mixed with VM-level
locking in various orders.
Other changes include a fix to avoid overflow when waiting for
extremely long intervals and a GC root stack mapping bug.
The biggest change in this commit is to split the system classloader
into two: one for boot classes (e.g. java.lang.*) and another for
application classes. This is necessary to make OpenJDK's security
checks happy.
The rest of the changes include bugfixes and additional JVM method
implementations in classpath-openjdk.cpp.
Whereas the GNU Classpath port used the strategy of patching Classpath
with core classes from Avian so as to minimize changes to the VM, this
port uses the opposite strategy: abstract and isolate
classpath-specific features in the VM similar to how we abstract away
platform-specific features in system.h. This allows us to use an
unmodified copy of OpenJDK's class library, including its core classes
and augmented by a few VM-specific classes in the "avian" package.
We use this utility instead of objcopy to embed data into object files
because it offers more control over e.g. section alignment, which is
important for bootimage builds.
This is necessary because objcopy does not currently allow us to
specify the alignment requirement for the .boot section used to store
the boot image for AOT builds. This may be a problem for Windows as
well, in which case we'll need to add a binaryToPE utility.
The trick is to make all destructors non-virtual. This is safe because
we never use the delete operator, which is the only case where virtual
destructors are relevant. This is a better solution than implementing
our own delete operator, because we want libraries loaded at runtime to
use the libstdc++ version, not ours.
Here is a patch for getting Avian to build in Windows. I used MinGW
and MSYS for the build environment. The patch has the following
changes:
1. java-nio.cpp: Had to add an include and remove a function
declaration that was reported as duplicate.
2. readme.txt: Updated the instructions to include notes about
building on Windows.
3. makefile: Added a conditional for MinGW. I left the existing "ifeq
($(platform),windows)" conditional alone so as to not break
cross-compiled Windows builds. There are some similarities between the
two, so it might be possible to combine portions of them in an elegant
manner. Since I'm not sure how the cross-compiled builds have been
done, I didn't want to mess with that portion of the makefile.