The bug here is that when a thread exits and becomes a "zombie", the
OS resources associated with it are not necessarily released until we
actually join and dispose of that thread. Since that only happens
during garbage collection, and collection normally only happens in
response to heap memory pressure, there's no guarantee that we'll GC
frequently enough to clean up zombies promptly and avoid running out
of resources.
The solution is to force a GC whenever we start a new thread and there
are at least N zombies waiting to be disposed, where N=16 for now.
We never define atomicCompareAndSwap64 for ARM or PowerPC, and
apparently only very recent ARM chips support it, so we must fall back
to synchronization-based emulation.
There were a couple of problems with the Avian_sun_misc_Unsafe_park
implementation in classpath-openjdk.cpp. First, the wait time should
be interpreted as milliseconds if absolute, but as nanoseconds
otherwise, whereas we were treating it as milliseconds in both cases.
Second, there was no mechanism to exit the while loop after the
specified time; the only way we could exit was via an unpark or
interrupt.
If we fail to resolve a given class (e.g. due to ProGuard obfuscating
or eliminating it), just move on to the next one rather than return
immediately. Otherwise, we may miss intercepting methods of classes
we can resolve.
sun.font.FontManager.initIDs is a native method defined in
libfontmanager.so, yet there seems to be no mechanism in OpenJDK's
class library to actually load that library, so we lazily load it
before trying to resolve the method.
Internally, the VM augments the method tables for abstract classes
with any inherited abstract methods to make code simpler elsewhere,
but that means we can't use that table to construct the result of
Class.getDeclaredMethods since it would include methods not actually
declared in the class. This commit ensures that we preserve and use
the original, un-augmented table for that purpose.
The result of Class.getInterfaces should not include interfaces
declared to be implemented/extended by superclasses/superinterfaces,
only those declared by the class itself. This is important because it
influences how java.io.ObjectStreamClass calculates serial version
IDs.
This includes a proper implementation of JVM_ActiveProcessorCount, as
well as JVM_SetLength and JVM_NewMultiArray. Also, we now accept up
to JNI_VERSION_1_6 in JVM_IsSupportedJNIVersion.
The main changes here are:
* fixes for runtime annotation support
* proper support for runtime generic type introspection
* throw NoClassDefFoundErrors instead of ClassNotFoundExceptions
where appropriate
This primarily required additions to classpath-openjdk.cpp to
intercept ZipFile, ZipEntry, and JarFile native methods to consult
embedded encryption policy jars when required.
The VM uses Integer and Long instances internally to wrap the results
of dynamic method invocations, but Method.invoke should use the
correct, specific type for the primitive (e.g. Character for char).
This rather large commit modifies the VM to use non-local returns to
throw exceptions instead of simply setting Thread::exception and
returning frame-by-frame as it used to. This has several benefits:
* Functions no longer need to check Thread::exception after each call
which might throw an exception (which would be especially tedious
and error-prone now that any function which allocates objects
directly or indirectly might throw an OutOfMemoryError)
* There's no need to audit the code for calls to functions which
previously did not throw exceptions but later do
* Performance should be improved slightly due to both the reduced
need for conditionals and because undwinding now occurs in a single
jump instead of a series of returns
The main disadvantages are:
* Slightly higher overhead for entering and leaving the VM via the
JNI and JDK methods
* Non-local returns can make the code harder to read
* We must be careful to register destructors for stack-allocated
resources with the Thread so they can be called prior to a
non-local return
The non-local return implementation is similar to setjmp/longjmp,
except it uses continuation-passing style to avoid the need for
cooperation from the C/C++ compiler. Native C++ exceptions would have
also been an option, but that would introduce a dependence on
libstdc++, which we're trying to avoid for portability reasons.
Finally, this commit ensures that the VM throws an OutOfMemoryError
instead of aborting when it reaches its memory ceiling. Currently, we
treat the ceiling as a soft limit and temporarily exceed it as
necessary to allow garbage collection and certain internal allocations
to succeed, but refuse to allocate any Java objects until the heap
size drops back below the ceiling.