Java requires that NaNs be converted to zero and that numbers at or
beyond the limits of integer representation be clamped to the largest
or smallest value that can be represented, respectively.
Our implementation uses Object.wait(long) to implement Thread.sleep,
which had the side effect of interpreting zero as infinity. However,
for Thread.sleep, zero just means zero. I assume that doesn't mean
"don't sleep at all", though, or else the app wouldn't have called
Thread.sleep in the first place, so this patch sleeps for one
millisecond when zero is passed -- just enough to yield the processor
for a bit. Thread.yield might be a better choice in this case, but I
assume the app would have called that directly if that's what it
wanted.
This led to fixed-position objects being considered unreachable when
they were actually still reachable, causing global weak JNI references
to be cleared prematurely, most notably leading to crashes in AWT
buffered image code.
This commit also fixes a field offset calculation mismatch in
bootimage.cpp relative to machine.cpp.
OpenJDK 7 has refactored this code relative to OpenJDK 6, and now
FontManager is an interface, with SunFontManager providing a (partial)
implementation.
On the ARM platform, Avian compiled to use OpenJDK gets this error on
startup:
java/lang/UnsatisfiedLinkError: no zip in java.library.path
at java/lang/ClassLoader.loadLibrary (line 1860)
at java/lang/Runtime.loadLibrary0 (line 845)
at java/lang/System.loadLibrary (line 1084)
at java/lang/System.initializeSystemClass (line 1145)
Using strace shows why:
[pid 22431]
stat64("/usr/lib/jvm/java-7-openjdk-armhf/jre/lib/i386/libzip.so",
0xbee377e0) = -1 ENOENT (No such file or directory)
The attached patch uses "arm" instead of "i386" in that path. This fixes the
problem.
Linux, FreeBSD, and QNX all use ELF, so no need to distinguish between
them when generating object files. To avoid confusion, I've switch
from using operating system names to using binary format names where
applicable.
When we skip a single-precision register to ensure a double-precision
load is aligned, we need to remember that in case we see another
single-precision argument later on, which we must backfill into that
register we skipped according to the ABI.
This ABI's calling convention passes arguments and returns results
using VFP registers, so we need to tweak vmNativeCall to match it.
Thanks to Damjan Jovanovic for pointing this out and providing an
initial patch.
The existing code handled such odd switch statements correctly in the
JIT case, but did the wrong thing for the AOT case, leading to an
assertion failure later on.
All but one test is passing. The failure is due to the fact that QNX
doesn't (in general) support calling fork(2) from a multithreaded
process. Thus, we'll need to use spawn instead of fork/exec on QNX,
which I'll attempt in a later commit.
http://www.qnx.com/developers/docs/6.4.1/neutrino/getting_started/s1_procs.html
4512a9a introduced a new ArgumentList constructor which was handling
some types incorrectly (e.g. implicitly converting floats to
integers). This commit fixes it.
We were assuming the array element size was always the native word
size, which is not correct in general for primitive arrays, and this
led to wasted space at best and memory corruption at worst.