The various crypto tests that were previously ignored have been re-enabled.
The abandoned i2p EdDSA library has been replaced with native support that was added in Java 15.
Java 17 (via the `SunEC` provider) does not support the secp256k1 curve (one of the two ECDSA curves supported in Corda). This would not normally have been an issue as secp256k1 is already taken care of by Bouncy Castle. However, this only works if the `Crypto` API is used or if `”BC”` is explicitly specified as the provider (e.g. `Signature.getInstance(“SHA256withECDSA”, “BC”)`). If no provider is specified, which is what is more common, and actually what the Java docs recommend, then this doesn’t work as the `SunEC` provider is selected. To resolve this, a custom provider was created, installed just in front of `SunEC`, which “augments” `SunEC` by delegating to Bouncy Castle if keys or parameters for secp256k1 are encountered.
`X509Utilities.createCertificate` now calls `X509Certificate.verify()` to verify the created certificate, rather than using the Bouncy Castle API. This is more representative of how certificates will be verified (e.g. during SSL handshake) and weeds out other issues (such as unsupported curve error for secp256k1).
`BCCryptoService` has been renamed to `DefaultCryptoService` as it no longer explicitly uses Bouncy Castle but rather uses the installed security providers. This was done to fix a failing test. Further, `BCCryptoService` was already relying on the installed providers in some places.
The hack to get Corda `SecureRandom` working was also resolved. Also, as an added bonus, tests which ignored `SPHINCS256_SHA256` have been reinstated.
Note, there is a slightly inconsistency between how EdDSA and ECDSA keys are handled (and also RSA). For the later, Bouncy Castle is preferred, and methods such as `toSupportedKey*` will convert any JDK class to Bouncy Castle. For EdDSA the preference is the JDK (`SunEC`). However, this is simply a continuation of the previous preference of the i2p library over Bouncy Castle.
"WARNING: sun.reflect.Reflection.getCallerClass is not supported. This will impact performance." warning was being caused by log4j. Latest version fixes this issue.
This is code refactoring and cleanup that is required to add a new WireTransaction component group for 4.12+ attachments, and for supporting legacy (4.11 or older) contract CorDapps in the node.
* ENT-11387: Fix to prevent interleaved stop/start causing bridge to be started with null session.
* ENT-11387: Fixed bug in assigning null to session.
* It uses URLs when in fact CorDapps are jar files, and so should being Path. It also does URL equality, which is not recommended
* Address (very old) TODO of removing RestrictedURL, which is not needed
Also, back-ported some minor changes from https://github.com/corda/enterprise/pull/5057.
The node now sends a transaction to the verifier if any of its attachments were compiled with Kotlin 1.2 (the net.corda.node.verification.external system property has been removed). It uses kotlinx-metadata to read the Kotlin metadata in the attachment to determine this. For now this scanning is done each time the attachment is loaded from the database.
The existing external verification integration tests were converted into smoke tests so that 4.11 nodes could be involved. This required various improvements to NodeProcess.Factory. A new JAVA_8_HOME environment variable, pointing to JDK 8, is required to run these tests.
There is still some follow-up work that needs to be done:
Sending transactions from a 4.11 node to a 4.12 node works, but not the other way round. A new WireTransaction component group needs to be introduced for storing 4.12 attachments so that they can be safely ignored by 4.11 nodes, and the 4.12 node needs to be able to load both 4.11 and 4.12 versions of the same contracts CorDapp so that they can be both attached to the transaction.
Even though attachments are cached when retrieved from the database, the Kotlin metadata version should be stored in the attachments db table, rather than being scanned each time.
Finally, VerificationService was refactored into NodeVerificationSupport and can be passed into SignedTransaction.verifyInternal, instead of needing the much heavier VerifyingServiceHub. This makes it easier for internal tools to verify transactions and spawn the verifier if necessary.