ZeroTierOne/node/IncomingPacket.cpp
2024-09-26 08:52:29 -04:00

1490 lines
67 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2026-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include "IncomingPacket.hpp"
#include "../include/ZeroTierOne.h"
#include "../version.h"
#include "Bond.hpp"
#include "Capability.hpp"
#include "CertificateOfMembership.hpp"
#include "Constants.hpp"
#include "Metrics.hpp"
#include "NetworkController.hpp"
#include "Node.hpp"
#include "PacketMultiplexer.hpp"
#include "Path.hpp"
#include "Peer.hpp"
#include "Revocation.hpp"
#include "RuntimeEnvironment.hpp"
#include "SHA512.hpp"
#include "Salsa20.hpp"
#include "SelfAwareness.hpp"
#include "Switch.hpp"
#include "Tag.hpp"
#include "Topology.hpp"
#include "Trace.hpp"
#include "World.hpp"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
namespace ZeroTier {
bool IncomingPacket::tryDecode(const RuntimeEnvironment* RR, void* tPtr, int32_t flowId)
{
const Address sourceAddress(source());
try {
// Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear)
const unsigned int c = cipher();
if (c == ZT_PROTO_CIPHER_SUITE__NO_CRYPTO_TRUSTED_PATH) {
// If this is marked as a packet via a trusted path, check source address and path ID.
// Obviously if no trusted paths are configured this always returns false and such
// packets are dropped on the floor.
const uint64_t tpid = trustedPathId();
if (RR->topology->shouldInboundPathBeTrusted(_path->address(), tpid)) {
_authenticated = true;
}
else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, packetId(), sourceAddress, hops(), "path not trusted");
return true;
}
}
else if ((c == ZT_PROTO_CIPHER_SUITE__C25519_POLY1305_NONE) && (verb() == Packet::VERB_HELLO)) {
// Only HELLO is allowed in the clear, but will still have a MAC
return _doHELLO(RR, tPtr, false);
}
const SharedPtr<Peer> peer(RR->topology->getPeer(tPtr, sourceAddress));
if (peer) {
if (! _authenticated) {
if (! dearmor(peer->key(), peer->aesKeys(), RR->identity)) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, packetId(), sourceAddress, hops(), "invalid MAC");
peer->recordIncomingInvalidPacket(_path);
return true;
}
}
if (! uncompress()) {
RR->t->incomingPacketInvalid(tPtr, _path, packetId(), sourceAddress, hops(), Packet::VERB_NOP, "LZ4 decompression failed");
return true;
}
_authenticated = true;
const Packet::Verb v = verb();
bool r = true;
switch (v) {
// case Packet::VERB_NOP:
default: // ignore unknown verbs, but if they pass auth check they are "received"
Metrics::pkt_nop_in++;
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), v, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
break;
case Packet::VERB_HELLO:
r = _doHELLO(RR, tPtr, true);
break;
case Packet::VERB_ACK:
r = _doACK(RR, tPtr, peer);
break;
case Packet::VERB_QOS_MEASUREMENT:
r = _doQOS_MEASUREMENT(RR, tPtr, peer);
break;
case Packet::VERB_ERROR:
r = _doERROR(RR, tPtr, peer);
break;
case Packet::VERB_OK:
r = _doOK(RR, tPtr, peer);
break;
case Packet::VERB_WHOIS:
r = _doWHOIS(RR, tPtr, peer);
break;
case Packet::VERB_RENDEZVOUS:
r = _doRENDEZVOUS(RR, tPtr, peer);
break;
case Packet::VERB_FRAME:
r = _doFRAME(RR, tPtr, peer, flowId);
break;
case Packet::VERB_EXT_FRAME:
r = _doEXT_FRAME(RR, tPtr, peer, flowId);
break;
case Packet::VERB_ECHO:
r = _doECHO(RR, tPtr, peer);
break;
case Packet::VERB_MULTICAST_LIKE:
r = _doMULTICAST_LIKE(RR, tPtr, peer);
break;
case Packet::VERB_NETWORK_CREDENTIALS:
r = _doNETWORK_CREDENTIALS(RR, tPtr, peer);
break;
case Packet::VERB_NETWORK_CONFIG_REQUEST:
r = _doNETWORK_CONFIG_REQUEST(RR, tPtr, peer);
break;
case Packet::VERB_NETWORK_CONFIG:
r = _doNETWORK_CONFIG(RR, tPtr, peer);
break;
case Packet::VERB_MULTICAST_GATHER:
r = _doMULTICAST_GATHER(RR, tPtr, peer);
break;
case Packet::VERB_MULTICAST_FRAME:
r = _doMULTICAST_FRAME(RR, tPtr, peer);
break;
case Packet::VERB_PUSH_DIRECT_PATHS:
r = _doPUSH_DIRECT_PATHS(RR, tPtr, peer);
break;
case Packet::VERB_USER_MESSAGE:
r = _doUSER_MESSAGE(RR, tPtr, peer);
break;
case Packet::VERB_REMOTE_TRACE:
r = _doREMOTE_TRACE(RR, tPtr, peer);
break;
case Packet::VERB_PATH_NEGOTIATION_REQUEST:
r = _doPATH_NEGOTIATION_REQUEST(RR, tPtr, peer);
break;
}
if (r) {
RR->node->statsLogVerb((unsigned int)v, (unsigned int)size());
return true;
}
return false;
}
else {
RR->sw->requestWhois(tPtr, RR->node->now(), sourceAddress);
return false;
}
}
catch (...) {
RR->t->incomingPacketInvalid(tPtr, _path, packetId(), sourceAddress, hops(), verb(), "unexpected exception in tryDecode()");
return true;
}
}
bool IncomingPacket::_doERROR(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID);
const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE];
uint64_t networkId = 0;
Metrics::pkt_error_in++;
/* Security note: we do not gate doERROR() with expectingReplyTo() to
* avoid having to log every outgoing packet ID. Instead we put the
* logic to determine whether we should consider an ERROR in each
* error handler. In most cases these are only trusted in specific
* circumstances. */
switch (errorCode) {
case Packet::ERROR_OBJ_NOT_FOUND:
// Object not found, currently only meaningful from network controllers.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network) && (network->controller() == peer->address())) {
network->setNotFound(tPtr);
}
}
Metrics::pkt_error_obj_not_found_in++;
break;
case Packet::ERROR_UNSUPPORTED_OPERATION:
// This can be sent in response to any operation, though right now we only
// consider it meaningful from network controllers. This would indicate
// that the queried node does not support acting as a controller.
if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) {
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network) && (network->controller() == peer->address())) {
network->setNotFound(tPtr);
}
}
Metrics::pkt_error_unsupported_op_in++;
break;
case Packet::ERROR_IDENTITY_COLLISION:
// FIXME: for federation this will need a payload with a signature or something.
if (RR->topology->isUpstream(peer->identity())) {
RR->node->postEvent(tPtr, ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION);
}
Metrics::pkt_error_identity_collision_in++;
break;
case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: {
// Peers can send this in response to frames if they do not have a recent enough COM from us
networkId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
const int64_t now = RR->node->now();
if ((network) && (network->config().com)) {
network->peerRequestedCredentials(tPtr, peer->address(), now);
}
Metrics::pkt_error_need_membership_cert_in++;
} break;
case Packet::ERROR_NETWORK_ACCESS_DENIED_: {
// Network controller: network access denied.
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network) && (network->controller() == peer->address())) {
network->setAccessDenied(tPtr);
}
Metrics::pkt_error_network_access_denied_in++;
} break;
case Packet::ERROR_UNWANTED_MULTICAST: {
// Members of networks can use this error to indicate that they no longer
// want to receive multicasts on a given channel.
networkId = at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if ((network) && (network->gate(tPtr, peer))) {
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8, 6), 6), at<uint32_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14));
RR->mc->remove(network->id(), mg, peer->address());
}
Metrics::pkt_error_unwanted_multicast_in++;
} break;
case Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED: {
// fprintf(stderr, "\nPacket::ERROR_NETWORK_AUTHENTICATION_REQUIRED\n\n");
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD)));
if ((network) && (network->controller() == peer->address())) {
int s = (int)size() - (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8);
if (s > 2) {
const uint16_t errorDataSize = at<uint16_t>(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8);
s -= 2;
if (s >= (int)errorDataSize) {
Dictionary<8192> authInfo(((const char*)this->data()) + (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 10), errorDataSize);
uint64_t authVer = authInfo.getUI(ZT_AUTHINFO_DICT_KEY_VERSION, 0ULL);
if (authVer == 0) {
char authenticationURL[2048];
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_AUTHENTICATION_URL, authenticationURL, sizeof(authenticationURL)) > 0) {
authenticationURL[sizeof(authenticationURL) - 1] = 0; // ensure always zero terminated
network->setAuthenticationRequired(tPtr, authenticationURL);
}
}
else if (authVer == 1) {
char issuerURL[2048] = { 0 };
char centralAuthURL[2048] = { 0 };
char ssoNonce[64] = { 0 };
char ssoState[128] = { 0 };
char ssoClientID[256] = { 0 };
char ssoProvider[64] = { 0 };
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_ISSUER_URL, issuerURL, sizeof(issuerURL)) > 0) {
issuerURL[sizeof(issuerURL) - 1] = 0;
}
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_CENTRAL_ENDPOINT_URL, centralAuthURL, sizeof(centralAuthURL)) > 0) {
centralAuthURL[sizeof(centralAuthURL) - 1] = 0;
}
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_NONCE, ssoNonce, sizeof(ssoNonce)) > 0) {
ssoNonce[sizeof(ssoNonce) - 1] = 0;
}
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_STATE, ssoState, sizeof(ssoState)) > 0) {
ssoState[sizeof(ssoState) - 1] = 0;
}
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_CLIENT_ID, ssoClientID, sizeof(ssoClientID)) > 0) {
ssoClientID[sizeof(ssoClientID) - 1] = 0;
}
if (authInfo.get(ZT_AUTHINFO_DICT_KEY_SSO_PROVIDER, ssoProvider, sizeof(ssoProvider)) > 0) {
ssoProvider[sizeof(ssoProvider) - 1] = 0;
}
else {
strncpy(ssoProvider, "default", sizeof(ssoProvider));
}
network->setAuthenticationRequired(tPtr, issuerURL, centralAuthURL, ssoClientID, ssoProvider, ssoNonce, ssoState);
}
}
}
else {
network->setAuthenticationRequired(tPtr, "");
}
}
Metrics::pkt_error_authentication_required_in++;
} break;
default:
break;
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_ERROR, inRePacketId, inReVerb, false, networkId, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doACK(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
/*
if (! peer->rateGateACK(RR->node->now())) {
return true;
}
int32_t ackedBytes;
if (payloadLength() != sizeof(ackedBytes)) {
return true; // ignore
}
memcpy(&ackedBytes, payload(), sizeof(ackedBytes));
peer->receivedAck(_path, RR->node->now(), Utils::ntoh(ackedBytes));
*/
Metrics::pkt_ack_in++;
return true;
}
bool IncomingPacket::_doQOS_MEASUREMENT(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_qos_in++;
if (! peer->rateGateQoS(RR->node->now(), _path)) {
return true;
}
if (payloadLength() > ZT_QOS_MAX_PACKET_SIZE || payloadLength() < ZT_QOS_MIN_PACKET_SIZE) {
return true; // ignore
}
const int64_t now = RR->node->now();
uint64_t rx_id[ZT_QOS_TABLE_SIZE];
uint16_t rx_ts[ZT_QOS_TABLE_SIZE];
char* begin = (char*)payload();
char* ptr = begin;
int count = 0;
unsigned int len = payloadLength();
// Read packet IDs and latency compensation intervals for each packet tracked by this QoS packet
while (ptr < (begin + len) && (count < ZT_QOS_TABLE_SIZE)) {
memcpy((void*)&rx_id[count], ptr, sizeof(uint64_t));
ptr += sizeof(uint64_t);
memcpy((void*)&rx_ts[count], ptr, sizeof(uint16_t));
ptr += sizeof(uint16_t);
count++;
}
peer->receivedQoS(_path, now, count, rx_id, rx_ts);
return true;
}
bool IncomingPacket::_doHELLO(const RuntimeEnvironment* RR, void* tPtr, const bool alreadyAuthenticated)
{
Metrics::pkt_hello_in++;
const int64_t now = RR->node->now();
const uint64_t pid = packetId();
const Address fromAddress(source());
const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO_IDX_REVISION);
const int64_t timestamp = at<int64_t>(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP);
Identity id;
unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this, ZT_PROTO_VERB_HELLO_IDX_IDENTITY);
if (protoVersion < ZT_PROTO_VERSION_MIN) {
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "protocol version too old");
return true;
}
if (fromAddress != id.address()) {
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "identity/address mismatch");
return true;
}
SharedPtr<Peer> peer(RR->topology->getPeer(tPtr, id.address()));
if (peer) {
// We already have an identity with this address -- check for collisions
if (! alreadyAuthenticated) {
if (peer->identity() != id) {
// Identity is different from the one we already have -- address collision
// Check rate limits
if (! RR->node->rateGateIdentityVerification(now, _path->address())) {
return true;
}
uint8_t key[ZT_SYMMETRIC_KEY_SIZE];
if (RR->identity.agree(id, key)) {
if (dearmor(key, peer->aesKeysIfSupported(), RR->identity)) { // ensure packet is authentic, otherwise drop
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "address collision");
Packet outp(id.address(), RR->identity.address(), Packet::VERB_ERROR);
outp.append((uint8_t)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION);
outp.armor(key, true, false, peer->aesKeysIfSupported(), peer->identity());
Metrics::pkt_error_out++;
Metrics::pkt_error_identity_collision_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC");
}
}
else {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid identity");
}
return true;
}
else {
// Identity is the same as the one we already have -- check packet integrity
if (! dearmor(peer->key(), peer->aesKeysIfSupported(), RR->identity)) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC");
return true;
}
// Continue at // VALID
}
} // else if alreadyAuthenticated then continue at // VALID
}
else {
// We don't already have an identity with this address -- validate and learn it
// Sanity check: this basically can't happen
if (alreadyAuthenticated) {
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "illegal alreadyAuthenticated state");
return true;
}
// Check rate limits
if (! RR->node->rateGateIdentityVerification(now, _path->address())) {
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "rate limit exceeded");
return true;
}
// Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap)
SharedPtr<Peer> newPeer(new Peer(RR, RR->identity, id));
if (! dearmor(newPeer->key(), newPeer->aesKeysIfSupported(), RR->identity)) {
RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC");
return true;
}
// Check that identity's address is valid as per the derivation function
if (! id.locallyValidate()) {
RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "invalid identity");
return true;
}
peer = RR->topology->addPeer(tPtr, newPeer);
// Continue at // VALID
}
// VALID -- if we made it here, packet passed identity and authenticity checks!
// Get external surface address if present (was not in old versions)
InetAddress externalSurfaceAddress;
if (ptr < size()) {
ptr += externalSurfaceAddress.deserialize(*this, ptr);
if ((externalSurfaceAddress) && (hops() == 0)) {
RR->sa->iam(tPtr, id.address(), _path->localSocket(), _path->address(), externalSurfaceAddress, RR->topology->isUpstream(id), now);
}
}
// Get primary planet world ID and world timestamp if present
uint64_t planetWorldId = 0;
uint64_t planetWorldTimestamp = 0;
if ((ptr + 16) <= size()) {
planetWorldId = at<uint64_t>(ptr);
ptr += 8;
planetWorldTimestamp = at<uint64_t>(ptr);
ptr += 8;
}
std::vector<std::pair<uint64_t, uint64_t> > moonIdsAndTimestamps;
if (ptr < size()) {
// Remainder of packet, if present, is encrypted
cryptField(peer->key(), ptr, size() - ptr);
// Get moon IDs and timestamps if present
if ((ptr + 2) <= size()) {
const unsigned int numMoons = at<uint16_t>(ptr);
ptr += 2;
for (unsigned int i = 0; i < numMoons; ++i) {
if ((World::Type)(*this)[ptr++] == World::TYPE_MOON) {
moonIdsAndTimestamps.push_back(std::pair<uint64_t, uint64_t>(at<uint64_t>(ptr), at<uint64_t>(ptr + 8)));
}
ptr += 16;
}
}
}
// Send OK(HELLO) with an echo of the packet's timestamp and some of the same
// information about us: version, sent-to address, etc.
Packet outp(id.address(), RR->identity.address(), Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_HELLO);
outp.append((uint64_t)pid);
outp.append((uint64_t)timestamp);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
_path->address().serialize(outp);
const unsigned int worldUpdateSizeAt = outp.size();
outp.addSize(2); // make room for 16-bit size field
if ((planetWorldId) && (RR->topology->planetWorldTimestamp() > planetWorldTimestamp) && (planetWorldId == RR->topology->planetWorldId())) {
RR->topology->planet().serialize(outp, false);
}
if (! moonIdsAndTimestamps.empty()) {
std::vector<World> moons(RR->topology->moons());
for (std::vector<World>::const_iterator m(moons.begin()); m != moons.end(); ++m) {
for (std::vector<std::pair<uint64_t, uint64_t> >::const_iterator i(moonIdsAndTimestamps.begin()); i != moonIdsAndTimestamps.end(); ++i) {
if (i->first == m->id()) {
if (m->timestamp() > i->second) {
m->serialize(outp, false);
}
break;
}
}
}
}
outp.setAt<uint16_t>(worldUpdateSizeAt, (uint16_t)(outp.size() - (worldUpdateSizeAt + 2)));
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), now);
peer->setRemoteVersion(protoVersion, vMajor, vMinor, vRevision); // important for this to go first so received() knows the version
peer->received(tPtr, _path, hops(), pid, payloadLength(), Packet::VERB_HELLO, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doOK(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_ok_in++;
const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB];
const uint64_t inRePacketId = at<uint64_t>(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID);
uint64_t networkId = 0;
if (! RR->node->expectingReplyTo(inRePacketId)) {
return true;
}
switch (inReVerb) {
case Packet::VERB_HELLO: {
const uint64_t latency = RR->node->now() - at<uint64_t>(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP);
const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION];
const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION];
const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION];
const unsigned int vRevision = at<uint16_t>(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION);
if (vProto < ZT_PROTO_VERSION_MIN) {
return true;
}
InetAddress externalSurfaceAddress;
unsigned int ptr = ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2;
// Get reported external surface address if present
if (ptr < size()) {
ptr += externalSurfaceAddress.deserialize(*this, ptr);
}
// Handle planet or moon updates if present
if ((ptr + 2) <= size()) {
const unsigned int worldsLen = at<uint16_t>(ptr);
ptr += 2;
if (RR->topology->shouldAcceptWorldUpdateFrom(peer->address())) {
const unsigned int endOfWorlds = ptr + worldsLen;
while (ptr < endOfWorlds) {
World w;
ptr += w.deserialize(*this, ptr);
RR->topology->addWorld(tPtr, w, false);
}
}
else {
ptr += worldsLen;
}
}
if (! hops()) {
_path->updateLatency((unsigned int)latency, RR->node->now());
}
peer->setRemoteVersion(vProto, vMajor, vMinor, vRevision);
if ((externalSurfaceAddress) && (hops() == 0)) {
RR->sa->iam(tPtr, peer->address(), _path->localSocket(), _path->address(), externalSurfaceAddress, RR->topology->isUpstream(peer->identity()), RR->node->now());
}
} break;
case Packet::VERB_WHOIS:
if (RR->topology->isUpstream(peer->identity())) {
const Identity id(*this, ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY);
RR->sw->doAnythingWaitingForPeer(tPtr, RR->topology->addPeer(tPtr, SharedPtr<Peer>(new Peer(RR, RR->identity, id))));
}
break;
case Packet::VERB_NETWORK_CONFIG_REQUEST: {
networkId = at<uint64_t>(ZT_PROTO_VERB_OK_IDX_PAYLOAD);
const SharedPtr<Network> network(RR->node->network(networkId));
if (network) {
network->handleConfigChunk(tPtr, packetId(), source(), *this, ZT_PROTO_VERB_OK_IDX_PAYLOAD);
}
} break;
case Packet::VERB_MULTICAST_GATHER: {
networkId = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(networkId));
if (network) {
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC, 6), 6), at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI));
const unsigned int count = at<uint16_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4);
RR->mc->addMultiple(tPtr, RR->node->now(), networkId, mg, field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6, count * 5), count, at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS));
}
} break;
case Packet::VERB_MULTICAST_FRAME: {
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS];
networkId = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_NETWORK_ID);
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_MAC, 6), 6), at<uint32_t>(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI));
const SharedPtr<Network> network(RR->node->network(networkId));
if (network) {
unsigned int offset = 0;
if ((flags & 0x01) != 0) { // deprecated but still used by older peers
CertificateOfMembership com;
offset += com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS);
if (com) {
network->addCredential(tPtr, com);
}
}
if ((flags & 0x02) != 0) {
// OK(MULTICAST_FRAME) includes implicit gather results
offset += ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS;
unsigned int totalKnown = at<uint32_t>(offset);
offset += 4;
unsigned int count = at<uint16_t>(offset);
offset += 2;
RR->mc->addMultiple(tPtr, RR->node->now(), networkId, mg, field(offset, count * 5), count, totalKnown);
}
}
} break;
default:
break;
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_OK, inRePacketId, inReVerb, false, networkId, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doWHOIS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
if ((! RR->topology->amUpstream()) && (! peer->rateGateInboundWhoisRequest(RR->node->now()))) {
return true;
}
Metrics::pkt_whois_in++;
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_WHOIS);
outp.append(packetId());
unsigned int count = 0;
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD;
while ((ptr + ZT_ADDRESS_LENGTH) <= size()) {
const Address addr(field(ptr, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);
ptr += ZT_ADDRESS_LENGTH;
const Identity id(RR->topology->getIdentity(tPtr, addr));
if (id) {
id.serialize(outp, false);
++count;
}
else {
// Request unknown WHOIS from upstream from us (if we have one)
RR->sw->requestWhois(tPtr, RR->node->now(), addr);
}
}
if (count > 0) {
Metrics::pkt_ok_out++;
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), RR->identity);
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_WHOIS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_rendezvous_in++;
if (RR->topology->isUpstream(peer->identity())) {
const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH);
const SharedPtr<Peer> rendezvousWith(RR->topology->getPeer(tPtr, with));
if (rendezvousWith) {
const unsigned int port = at<uint16_t>(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT);
const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN];
if ((port > 0) && ((addrlen == 4) || (addrlen == 16))) {
InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS, addrlen), addrlen, port);
if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, with, _path->localSocket(), atAddr)) {
const uint64_t junk = RR->node->prng();
RR->node->putPacket(tPtr, _path->localSocket(), atAddr, &junk, 4, 2); // send low-TTL junk packet to 'open' local NAT(s) and stateful firewalls
rendezvousWith->attemptToContactAt(tPtr, _path->localSocket(), atAddr, RR->node->now(), false);
}
}
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_RENDEZVOUS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
// Returns true if packet appears valid; pos and proto will be set
static bool _ipv6GetPayload(const uint8_t* frameData, unsigned int frameLen, unsigned int& pos, unsigned int& proto)
{
if (frameLen < 40) {
return false;
}
pos = 40;
proto = frameData[6];
while (pos <= frameLen) {
switch (proto) {
case 0: // hop-by-hop options
case 43: // routing
case 60: // destination options
case 135: // mobility options
if ((pos + 8) > frameLen) {
return false; // invalid!
}
proto = frameData[pos];
pos += ((unsigned int)frameData[pos + 1] * 8) + 8;
break;
// case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway
// case 50:
// case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff
default:
return true;
}
}
return false; // overflow == invalid
}
bool IncomingPacket::_doFRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer, int32_t flowId)
{
Metrics::pkt_frame_in++;
int32_t _flowId = ZT_QOS_NO_FLOW;
if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
const uint8_t* const frameData = reinterpret_cast<const uint8_t*>(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
if (etherType == ZT_ETHERTYPE_IPV4 && (frameLen >= 20)) {
uint16_t srcPort = 0;
uint16_t dstPort = 0;
uint8_t proto = (reinterpret_cast<const uint8_t*>(frameData)[9]);
const unsigned int headerLen = 4 * (reinterpret_cast<const uint8_t*>(frameData)[0] & 0xf);
switch (proto) {
case 0x01: // ICMP
// flowId = 0x01;
break;
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (headerLen + 4)) {
unsigned int pos = headerLen + 0;
srcPort = (reinterpret_cast<const uint8_t*>(frameData)[pos++]) << 8;
srcPort |= (reinterpret_cast<const uint8_t*>(frameData)[pos]);
pos++;
dstPort = (reinterpret_cast<const uint8_t*>(frameData)[pos++]) << 8;
dstPort |= (reinterpret_cast<const uint8_t*>(frameData)[pos]);
_flowId = dstPort ^ srcPort ^ proto;
}
break;
}
}
if (etherType == ZT_ETHERTYPE_IPV6 && (frameLen >= 40)) {
uint16_t srcPort = 0;
uint16_t dstPort = 0;
unsigned int pos;
unsigned int proto;
_ipv6GetPayload((const uint8_t*)frameData, frameLen, pos, proto);
switch (proto) {
case 0x3A: // ICMPv6
// flowId = 0x3A;
break;
// All these start with 16-bit source and destination port in that order
case 0x06: // TCP
case 0x11: // UDP
case 0x84: // SCTP
case 0x88: // UDPLite
if (frameLen > (pos + 4)) {
srcPort = (reinterpret_cast<const uint8_t*>(frameData)[pos++]) << 8;
srcPort |= (reinterpret_cast<const uint8_t*>(frameData)[pos]);
pos++;
dstPort = (reinterpret_cast<const uint8_t*>(frameData)[pos++]) << 8;
dstPort |= (reinterpret_cast<const uint8_t*>(frameData)[pos]);
_flowId = dstPort ^ srcPort ^ proto;
}
break;
default:
break;
}
}
}
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
bool trustEstablished = false;
if (network) {
if (network->gate(tPtr, peer)) {
trustEstablished = true;
if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = at<uint16_t>(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE);
const MAC sourceMac(peer->address(), nwid);
const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
const uint8_t* const frameData = reinterpret_cast<const uint8_t*>(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD;
if (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), sourceMac, network->mac(), frameData, frameLen, etherType, 0) > 0) {
RR->pm->putFrame(tPtr, nwid, network->userPtr(), sourceMac, network->mac(), etherType, 0, (const void*)frameData, frameLen, _flowId);
}
}
}
else {
_sendErrorNeedCredentials(RR, tPtr, peer, nwid);
return false;
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_FRAME, 0, Packet::VERB_NOP, trustEstablished, nwid, _flowId);
return true;
}
bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer, int32_t flowId)
{
Metrics::pkt_ext_frame_in++;
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID);
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS];
unsigned int comLen = 0;
if ((flags & 0x01) != 0) { // inline COM with EXT_FRAME is deprecated but still used with old peers
CertificateOfMembership com;
comLen = com.deserialize(*this, ZT_PROTO_VERB_EXT_FRAME_IDX_COM);
if (com) {
network->addCredential(tPtr, com);
}
}
if (! network->gate(tPtr, peer)) {
RR->t->incomingNetworkAccessDenied(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, true);
_sendErrorNeedCredentials(RR, tPtr, peer, nwid);
return false;
}
if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) {
const unsigned int etherType = at<uint16_t>(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE);
const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO, ZT_PROTO_VERB_EXT_FRAME_LEN_TO), ZT_PROTO_VERB_EXT_FRAME_LEN_TO);
const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM, ZT_PROTO_VERB_EXT_FRAME_LEN_FROM), ZT_PROTO_VERB_EXT_FRAME_LEN_FROM);
const unsigned int frameLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD);
const uint8_t* const frameData = (const uint8_t*)field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD, frameLen);
if ((! from) || (from == network->mac())) {
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay
return true;
}
switch (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), from, to, frameData, frameLen, etherType, 0)) {
case 1:
if (from != MAC(peer->address(), nwid)) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from, peer->address());
}
else {
RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "bridging not allowed (remote)");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay
return true;
}
}
else if (to != network->mac()) {
if (to.isMulticast()) {
if (network->config().multicastLimit == 0) {
RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "multicast disabled");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay
return true;
}
}
else if (! network->config().permitsBridging(RR->identity.address())) {
RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "bridging not allowed (local)");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay
return true;
}
}
// fall through -- 2 means accept regardless of bridging checks or other restrictions
case 2:
RR->pm->putFrame(tPtr, nwid, network->userPtr(), from, to, etherType, 0, (const void*)frameData, frameLen, flowId);
break;
}
}
if ((flags & 0x10) != 0) { // ACK requested
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_EXT_FRAME);
outp.append((uint64_t)packetId());
outp.append((uint64_t)nwid);
const int64_t now = RR->node->now();
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId);
}
else {
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, false, nwid, flowId);
}
return true;
}
bool IncomingPacket::_doECHO(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_echo_in++;
uint64_t now = RR->node->now();
if (! _path->rateGateEchoRequest(now)) {
return true;
}
const uint64_t pid = packetId();
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_ECHO);
outp.append((uint64_t)pid);
if (size() > ZT_PACKET_IDX_PAYLOAD) {
outp.append(reinterpret_cast<const unsigned char*>(data()) + ZT_PACKET_IDX_PAYLOAD, size() - ZT_PACKET_IDX_PAYLOAD);
}
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
peer->received(tPtr, _path, hops(), pid, payloadLength(), Packet::VERB_ECHO, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_multicast_like_in++;
const int64_t now = RR->node->now();
bool authorized = false;
uint64_t lastNwid = 0;
// Packet contains a series of 18-byte network,MAC,ADI tuples
for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; ptr < size(); ptr += 18) {
const uint64_t nwid = at<uint64_t>(ptr);
if (nwid != lastNwid) {
lastNwid = nwid;
SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
authorized = network->gate(tPtr, peer);
}
if (! authorized) {
authorized = ((RR->topology->amUpstream()) || (RR->node->localControllerHasAuthorized(now, nwid, peer->address())));
}
}
if (authorized) {
RR->mc->add(tPtr, now, nwid, MulticastGroup(MAC(field(ptr + 8, 6), 6), at<uint32_t>(ptr + 14)), peer->address());
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_LIKE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doNETWORK_CREDENTIALS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_network_credentials_in++;
if (! peer->rateGateCredentialsReceived(RR->node->now())) {
return true;
}
CertificateOfMembership com;
Capability cap;
Tag tag;
Revocation revocation;
CertificateOfOwnership coo;
bool trustEstablished = false;
SharedPtr<Network> network;
unsigned int p = ZT_PACKET_IDX_PAYLOAD;
while ((p < size()) && ((*this)[p] != 0)) {
p += com.deserialize(*this, p);
if (com) {
network = RR->node->network(com.networkId());
if (network) {
switch (network->addCredential(tPtr, com)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
}
++p; // skip trailing 0 after COMs if present
if (p < size()) { // older ZeroTier versions do not send capabilities, tags, or revocations
const unsigned int numCapabilities = at<uint16_t>(p);
p += 2;
for (unsigned int i = 0; i < numCapabilities; ++i) {
p += cap.deserialize(*this, p);
if ((! network) || (network->id() != cap.networkId())) {
network = RR->node->network(cap.networkId());
}
if (network) {
switch (network->addCredential(tPtr, cap)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) {
return true;
}
const unsigned int numTags = at<uint16_t>(p);
p += 2;
for (unsigned int i = 0; i < numTags; ++i) {
p += tag.deserialize(*this, p);
if ((! network) || (network->id() != tag.networkId())) {
network = RR->node->network(tag.networkId());
}
if (network) {
switch (network->addCredential(tPtr, tag)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) {
return true;
}
const unsigned int numRevocations = at<uint16_t>(p);
p += 2;
for (unsigned int i = 0; i < numRevocations; ++i) {
p += revocation.deserialize(*this, p);
if ((! network) || (network->id() != revocation.networkId())) {
network = RR->node->network(revocation.networkId());
}
if (network) {
switch (network->addCredential(tPtr, peer->address(), revocation)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
if (p >= size()) {
return true;
}
const unsigned int numCoos = at<uint16_t>(p);
p += 2;
for (unsigned int i = 0; i < numCoos; ++i) {
p += coo.deserialize(*this, p);
if ((! network) || (network->id() != coo.networkId())) {
network = RR->node->network(coo.networkId());
}
if (network) {
switch (network->addCredential(tPtr, coo)) {
case Membership::ADD_REJECTED:
break;
case Membership::ADD_ACCEPTED_NEW:
case Membership::ADD_ACCEPTED_REDUNDANT:
trustEstablished = true;
break;
case Membership::ADD_DEFERRED_FOR_WHOIS:
return false;
}
}
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_NETWORK_CREDENTIALS, 0, Packet::VERB_NOP, trustEstablished, (network) ? network->id() : 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_network_config_request_in++;
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID);
const unsigned int hopCount = hops();
const uint64_t requestPacketId = packetId();
if (RR->localNetworkController) {
const unsigned int metaDataLength = (ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN <= size()) ? at<uint16_t>(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN) : 0;
const char* metaDataBytes = (metaDataLength != 0) ? (const char*)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT, metaDataLength) : (const char*)0;
const Dictionary<ZT_NETWORKCONFIG_METADATA_DICT_CAPACITY> metaData(metaDataBytes, metaDataLength);
RR->localNetworkController->request(nwid, (hopCount > 0) ? InetAddress() : _path->address(), requestPacketId, peer->identity(), metaData);
}
else {
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION);
outp.append(nwid);
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
Metrics::pkt_error_out++;
Metrics::pkt_error_unsupported_op_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
peer->received(tPtr, _path, hopCount, requestPacketId, payloadLength(), Packet::VERB_NETWORK_CONFIG_REQUEST, 0, Packet::VERB_NOP, false, nwid, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doNETWORK_CONFIG(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_network_config_in++;
const SharedPtr<Network> network(RR->node->network(at<uint64_t>(ZT_PACKET_IDX_PAYLOAD)));
if (network) {
const uint64_t configUpdateId = network->handleConfigChunk(tPtr, packetId(), source(), *this, ZT_PACKET_IDX_PAYLOAD);
if (configUpdateId) {
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK);
outp.append((uint8_t)Packet::VERB_ECHO);
outp.append((uint64_t)packetId());
outp.append((uint64_t)network->id());
outp.append((uint64_t)configUpdateId);
const int64_t now = RR->node->now();
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_NETWORK_CONFIG, 0, Packet::VERB_NOP, false, (network) ? network->id() : 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_multicast_gather_in++;
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID);
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS];
const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC, 6), 6), at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI));
const unsigned int gatherLimit = at<uint32_t>(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT);
const SharedPtr<Network> network(RR->node->network(nwid));
if ((flags & 0x01) != 0) {
try {
CertificateOfMembership com;
com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM);
if ((com) && (network)) {
network->addCredential(tPtr, com);
}
}
catch (...) {
} // discard invalid COMs
}
const bool trustEstablished = (network) ? network->gate(tPtr, peer) : false;
const int64_t now = RR->node->now();
if ((gatherLimit > 0) && ((trustEstablished) || (RR->topology->amUpstream()) || (RR->node->localControllerHasAuthorized(now, nwid, peer->address())))) {
Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER);
outp.append(packetId());
outp.append(nwid);
mg.mac().appendTo(outp);
outp.append((uint32_t)mg.adi());
const unsigned int gatheredLocally = RR->mc->gather(peer->address(), nwid, mg, outp, gatherLimit);
if (gatheredLocally > 0) {
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), now);
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_GATHER, 0, Packet::VERB_NOP, trustEstablished, nwid, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_multicast_frame_in++;
const uint64_t nwid = at<uint64_t>(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID);
const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FLAGS];
const SharedPtr<Network> network(RR->node->network(nwid));
if (network) {
// Offset -- size of optional fields added to position of later fields
unsigned int offset = 0;
if ((flags & 0x01) != 0) {
// This is deprecated but may still be sent by old peers
CertificateOfMembership com;
offset += com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_FRAME_IDX_COM);
if (com) {
network->addCredential(tPtr, com);
}
}
if (! network->gate(tPtr, peer)) {
_sendErrorNeedCredentials(RR, tPtr, peer, nwid);
return false;
}
unsigned int gatherLimit = 0;
if ((flags & 0x02) != 0) {
gatherLimit = at<uint32_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_GATHER_LIMIT);
offset += 4;
}
MAC from;
if ((flags & 0x04) != 0) {
from.setTo(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC, 6), 6);
offset += 6;
}
else {
from.fromAddress(peer->address(), nwid);
}
const MulticastGroup to(MAC(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_MAC, 6), 6), at<uint32_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_ADI));
const unsigned int etherType = at<uint16_t>(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE);
const unsigned int frameLen = size() - (offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME);
if (network->config().multicastLimit == 0) {
RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_MULTICAST_FRAME, from, to.mac(), "multicast disabled");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, false, nwid, ZT_QOS_NO_FLOW);
return true;
}
if ((frameLen > 0) && (frameLen <= ZT_MAX_MTU)) {
if (! to.mac().isMulticast()) {
RR->t->incomingPacketInvalid(tPtr, _path, packetId(), source(), hops(), Packet::VERB_MULTICAST_FRAME, "destination not multicast");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay
return true;
}
if ((! from) || (from.isMulticast()) || (from == network->mac())) {
RR->t->incomingPacketInvalid(tPtr, _path, packetId(), source(), hops(), Packet::VERB_MULTICAST_FRAME, "invalid source MAC");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay
return true;
}
const uint8_t* const frameData = (const uint8_t*)field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME, frameLen);
if ((flags & 0x08) && (network->config().isMulticastReplicator(RR->identity.address()))) {
RR->mc->send(tPtr, RR->node->now(), network, peer->address(), to, from, etherType, frameData, frameLen);
}
if (from != MAC(peer->address(), nwid)) {
if (network->config().permitsBridging(peer->address())) {
network->learnBridgeRoute(from, peer->address());
}
else {
RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_MULTICAST_FRAME, from, to.mac(), "bridging not allowed (remote)");
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay
return true;
}
}
if (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), from, to.mac(), frameData, frameLen, etherType, 0) > 0) {
RR->node->putFrame(tPtr, nwid, network->userPtr(), from, to.mac(), etherType, 0, (const void*)frameData, frameLen);
}
}
if (gatherLimit) {
Packet outp(source(), RR->identity.address(), Packet::VERB_OK);
outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME);
outp.append(packetId());
outp.append(nwid);
to.mac().appendTo(outp);
outp.append((uint32_t)to.adi());
outp.append((unsigned char)0x02); // flag 0x02 = contains gather results
if (RR->mc->gather(peer->address(), nwid, to, outp, gatherLimit)) {
const int64_t now = RR->node->now();
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now);
Metrics::pkt_ok_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW);
}
return true;
}
bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_push_direct_paths_in++;
const int64_t now = RR->node->now();
if (! peer->rateGatePushDirectPaths(now)) {
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_PUSH_DIRECT_PATHS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
// Second, limit addresses by scope and type
uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE + 1][2]; // [][0] is v4, [][1] is v6
memset(countPerScope, 0, sizeof(countPerScope));
unsigned int count = at<uint16_t>(ZT_PACKET_IDX_PAYLOAD);
unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2;
while (count--) { // if ptr overflows Buffer will throw
unsigned int flags = (*this)[ptr++];
unsigned int extLen = at<uint16_t>(ptr);
ptr += 2;
ptr += extLen; // unused right now
unsigned int addrType = (*this)[ptr++];
unsigned int addrLen = (*this)[ptr++];
switch (addrType) {
case 4: {
const InetAddress a(field(ptr, 4), 4, at<uint16_t>(ptr + 4));
if (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && // not being told to forget
(! (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now, a)))) && // not already known
(RR->node->shouldUsePathForZeroTierTraffic(tPtr, peer->address(), _path->localSocket(), a))) // should use path
{
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->clusterRedirect(tPtr, _path, a, now);
}
else if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
peer->attemptToContactAt(tPtr, InetAddress(), a, now, false);
}
}
} break;
case 6: {
const InetAddress a(field(ptr, 16), 16, at<uint16_t>(ptr + 16));
if (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && // not being told to forget
(! (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now, a)))) && // not already known
(RR->node->shouldUsePathForZeroTierTraffic(tPtr, peer->address(), _path->localSocket(), a))) // should use path
{
if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) {
peer->clusterRedirect(tPtr, _path, a, now);
}
else if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) {
peer->attemptToContactAt(tPtr, InetAddress(), a, now, false);
}
}
} break;
}
ptr += addrLen;
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_PUSH_DIRECT_PATHS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doUSER_MESSAGE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_user_message_in++;
if (likely(size() >= (ZT_PACKET_IDX_PAYLOAD + 8))) {
ZT_UserMessage um;
um.origin = peer->address().toInt();
um.typeId = at<uint64_t>(ZT_PACKET_IDX_PAYLOAD);
um.data = reinterpret_cast<const void*>(reinterpret_cast<const uint8_t*>(data()) + ZT_PACKET_IDX_PAYLOAD + 8);
um.length = size() - (ZT_PACKET_IDX_PAYLOAD + 8);
RR->node->postEvent(tPtr, ZT_EVENT_USER_MESSAGE, reinterpret_cast<const void*>(&um));
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_USER_MESSAGE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doREMOTE_TRACE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_remote_trace_in++;
ZT_RemoteTrace rt;
const char* ptr = reinterpret_cast<const char*>(data()) + ZT_PACKET_IDX_PAYLOAD;
const char* const eof = reinterpret_cast<const char*>(data()) + size();
rt.origin = peer->address().toInt();
rt.data = const_cast<char*>(ptr); // start of first string
while (ptr < eof) {
if (! *ptr) { // end of string
rt.len = (unsigned int)(ptr - rt.data);
if ((rt.len > 0) && (rt.len <= ZT_MAX_REMOTE_TRACE_SIZE)) {
RR->node->postEvent(tPtr, ZT_EVENT_REMOTE_TRACE, &rt);
}
rt.data = const_cast<char*>(++ptr); // start of next string, if any
}
else {
++ptr;
}
}
peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_REMOTE_TRACE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW);
return true;
}
bool IncomingPacket::_doPATH_NEGOTIATION_REQUEST(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer)
{
Metrics::pkt_path_negotiation_request_in++;
uint64_t now = RR->node->now();
if (! peer->rateGatePathNegotiation(now, _path)) {
return true;
}
if (payloadLength() != sizeof(int16_t)) {
return true;
}
int16_t remoteUtility = 0;
memcpy(&remoteUtility, payload(), sizeof(int16_t));
peer->processIncomingPathNegotiationRequest(now, _path, Utils::ntoh(remoteUtility));
return true;
}
void IncomingPacket::_sendErrorNeedCredentials(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr<Peer>& peer, const uint64_t nwid)
{
Packet outp(source(), RR->identity.address(), Packet::VERB_ERROR);
outp.append((uint8_t)verb());
outp.append(packetId());
outp.append((uint8_t)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE);
outp.append(nwid);
outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity());
Metrics::pkt_error_out++;
Metrics::pkt_error_need_membership_cert_out++;
_path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now());
}
} // namespace ZeroTier