/* * Copyright (c)2013-2020 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2026-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #include "IncomingPacket.hpp" #include "../include/ZeroTierOne.h" #include "../version.h" #include "Bond.hpp" #include "Capability.hpp" #include "CertificateOfMembership.hpp" #include "Constants.hpp" #include "Metrics.hpp" #include "NetworkController.hpp" #include "Node.hpp" #include "PacketMultiplexer.hpp" #include "Path.hpp" #include "Peer.hpp" #include "Revocation.hpp" #include "RuntimeEnvironment.hpp" #include "SHA512.hpp" #include "Salsa20.hpp" #include "SelfAwareness.hpp" #include "Switch.hpp" #include "Tag.hpp" #include "Topology.hpp" #include "Trace.hpp" #include "World.hpp" #include #include #include namespace ZeroTier { bool IncomingPacket::tryDecode(const RuntimeEnvironment* RR, void* tPtr, int32_t flowId) { const Address sourceAddress(source()); try { // Check for trusted paths or unencrypted HELLOs (HELLO is the only packet sent in the clear) const unsigned int c = cipher(); if (c == ZT_PROTO_CIPHER_SUITE__NO_CRYPTO_TRUSTED_PATH) { // If this is marked as a packet via a trusted path, check source address and path ID. // Obviously if no trusted paths are configured this always returns false and such // packets are dropped on the floor. const uint64_t tpid = trustedPathId(); if (RR->topology->shouldInboundPathBeTrusted(_path->address(), tpid)) { _authenticated = true; } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, packetId(), sourceAddress, hops(), "path not trusted"); return true; } } else if ((c == ZT_PROTO_CIPHER_SUITE__C25519_POLY1305_NONE) && (verb() == Packet::VERB_HELLO)) { // Only HELLO is allowed in the clear, but will still have a MAC return _doHELLO(RR, tPtr, false); } const SharedPtr peer(RR->topology->getPeer(tPtr, sourceAddress)); if (peer) { if (! _authenticated) { if (! dearmor(peer->key(), peer->aesKeys(), RR->identity)) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, packetId(), sourceAddress, hops(), "invalid MAC"); peer->recordIncomingInvalidPacket(_path); return true; } } if (! uncompress()) { RR->t->incomingPacketInvalid(tPtr, _path, packetId(), sourceAddress, hops(), Packet::VERB_NOP, "LZ4 decompression failed"); return true; } _authenticated = true; const Packet::Verb v = verb(); bool r = true; switch (v) { // case Packet::VERB_NOP: default: // ignore unknown verbs, but if they pass auth check they are "received" Metrics::pkt_nop_in++; peer->received(tPtr, _path, hops(), packetId(), payloadLength(), v, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); break; case Packet::VERB_HELLO: r = _doHELLO(RR, tPtr, true); break; case Packet::VERB_ACK: r = _doACK(RR, tPtr, peer); break; case Packet::VERB_QOS_MEASUREMENT: r = _doQOS_MEASUREMENT(RR, tPtr, peer); break; case Packet::VERB_ERROR: r = _doERROR(RR, tPtr, peer); break; case Packet::VERB_OK: r = _doOK(RR, tPtr, peer); break; case Packet::VERB_WHOIS: r = _doWHOIS(RR, tPtr, peer); break; case Packet::VERB_RENDEZVOUS: r = _doRENDEZVOUS(RR, tPtr, peer); break; case Packet::VERB_FRAME: r = _doFRAME(RR, tPtr, peer, flowId); break; case Packet::VERB_EXT_FRAME: r = _doEXT_FRAME(RR, tPtr, peer, flowId); break; case Packet::VERB_ECHO: r = _doECHO(RR, tPtr, peer); break; case Packet::VERB_MULTICAST_LIKE: r = _doMULTICAST_LIKE(RR, tPtr, peer); break; case Packet::VERB_NETWORK_CREDENTIALS: r = _doNETWORK_CREDENTIALS(RR, tPtr, peer); break; case Packet::VERB_NETWORK_CONFIG_REQUEST: r = _doNETWORK_CONFIG_REQUEST(RR, tPtr, peer); break; case Packet::VERB_NETWORK_CONFIG: r = _doNETWORK_CONFIG(RR, tPtr, peer); break; case Packet::VERB_MULTICAST_GATHER: r = _doMULTICAST_GATHER(RR, tPtr, peer); break; case Packet::VERB_MULTICAST_FRAME: r = _doMULTICAST_FRAME(RR, tPtr, peer); break; case Packet::VERB_PUSH_DIRECT_PATHS: r = _doPUSH_DIRECT_PATHS(RR, tPtr, peer); break; case Packet::VERB_USER_MESSAGE: r = _doUSER_MESSAGE(RR, tPtr, peer); break; case Packet::VERB_REMOTE_TRACE: r = _doREMOTE_TRACE(RR, tPtr, peer); break; case Packet::VERB_PATH_NEGOTIATION_REQUEST: r = _doPATH_NEGOTIATION_REQUEST(RR, tPtr, peer); break; } if (r) { RR->node->statsLogVerb((unsigned int)v, (unsigned int)size()); return true; } return false; } else { RR->sw->requestWhois(tPtr, RR->node->now(), sourceAddress); return false; } } catch (...) { RR->t->incomingPacketInvalid(tPtr, _path, packetId(), sourceAddress, hops(), verb(), "unexpected exception in tryDecode()"); return true; } } bool IncomingPacket::_doERROR(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_ERROR_IDX_IN_RE_VERB]; const uint64_t inRePacketId = at(ZT_PROTO_VERB_ERROR_IDX_IN_RE_PACKET_ID); const Packet::ErrorCode errorCode = (Packet::ErrorCode)(*this)[ZT_PROTO_VERB_ERROR_IDX_ERROR_CODE]; uint64_t networkId = 0; Metrics::pkt_error_in++; /* Security note: we do not gate doERROR() with expectingReplyTo() to * avoid having to log every outgoing packet ID. Instead we put the * logic to determine whether we should consider an ERROR in each * error handler. In most cases these are only trusted in specific * circumstances. */ switch (errorCode) { case Packet::ERROR_OBJ_NOT_FOUND: // Object not found, currently only meaningful from network controllers. if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) { const SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD))); if ((network) && (network->controller() == peer->address())) { network->setNotFound(tPtr); } } Metrics::pkt_error_obj_not_found_in++; break; case Packet::ERROR_UNSUPPORTED_OPERATION: // This can be sent in response to any operation, though right now we only // consider it meaningful from network controllers. This would indicate // that the queried node does not support acting as a controller. if (inReVerb == Packet::VERB_NETWORK_CONFIG_REQUEST) { const SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD))); if ((network) && (network->controller() == peer->address())) { network->setNotFound(tPtr); } } Metrics::pkt_error_unsupported_op_in++; break; case Packet::ERROR_IDENTITY_COLLISION: // FIXME: for federation this will need a payload with a signature or something. if (RR->topology->isUpstream(peer->identity())) { RR->node->postEvent(tPtr, ZT_EVENT_FATAL_ERROR_IDENTITY_COLLISION); } Metrics::pkt_error_identity_collision_in++; break; case Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE: { // Peers can send this in response to frames if they do not have a recent enough COM from us networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); const int64_t now = RR->node->now(); if ((network) && (network->config().com)) { network->peerRequestedCredentials(tPtr, peer->address(), now); } Metrics::pkt_error_need_membership_cert_in++; } break; case Packet::ERROR_NETWORK_ACCESS_DENIED_: { // Network controller: network access denied. const SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD))); if ((network) && (network->controller() == peer->address())) { network->setAccessDenied(tPtr); } Metrics::pkt_error_network_access_denied_in++; } break; case Packet::ERROR_UNWANTED_MULTICAST: { // Members of networks can use this error to indicate that they no longer // want to receive multicasts on a given channel. networkId = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if ((network) && (network->gate(tPtr, peer))) { const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8, 6), 6), at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 14)); RR->mc->remove(network->id(), mg, peer->address()); } Metrics::pkt_error_unwanted_multicast_in++; } break; case Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED: { // fprintf(stderr, "\nPacket::ERROR_NETWORK_AUTHENTICATION_REQUIRED\n\n"); const SharedPtr network(RR->node->network(at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD))); if ((network) && (network->controller() == peer->address())) { int s = (int)size() - (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8); if (s > 2) { const uint16_t errorDataSize = at(ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 8); s -= 2; if (s >= (int)errorDataSize) { Dictionary<8192> authInfo(((const char*)this->data()) + (ZT_PROTO_VERB_ERROR_IDX_PAYLOAD + 10), errorDataSize); uint64_t authVer = authInfo.getUI(ZT_AUTHINFO_DICT_KEY_VERSION, 0ULL); if (authVer == 0) { char authenticationURL[2048]; if (authInfo.get(ZT_AUTHINFO_DICT_KEY_AUTHENTICATION_URL, authenticationURL, sizeof(authenticationURL)) > 0) { authenticationURL[sizeof(authenticationURL) - 1] = 0; // ensure always zero terminated network->setAuthenticationRequired(tPtr, authenticationURL); } } else if (authVer == 1) { char issuerURL[2048] = { 0 }; char centralAuthURL[2048] = { 0 }; char ssoNonce[64] = { 0 }; char ssoState[128] = { 0 }; char ssoClientID[256] = { 0 }; char ssoProvider[64] = { 0 }; if (authInfo.get(ZT_AUTHINFO_DICT_KEY_ISSUER_URL, issuerURL, sizeof(issuerURL)) > 0) { issuerURL[sizeof(issuerURL) - 1] = 0; } if (authInfo.get(ZT_AUTHINFO_DICT_KEY_CENTRAL_ENDPOINT_URL, centralAuthURL, sizeof(centralAuthURL)) > 0) { centralAuthURL[sizeof(centralAuthURL) - 1] = 0; } if (authInfo.get(ZT_AUTHINFO_DICT_KEY_NONCE, ssoNonce, sizeof(ssoNonce)) > 0) { ssoNonce[sizeof(ssoNonce) - 1] = 0; } if (authInfo.get(ZT_AUTHINFO_DICT_KEY_STATE, ssoState, sizeof(ssoState)) > 0) { ssoState[sizeof(ssoState) - 1] = 0; } if (authInfo.get(ZT_AUTHINFO_DICT_KEY_CLIENT_ID, ssoClientID, sizeof(ssoClientID)) > 0) { ssoClientID[sizeof(ssoClientID) - 1] = 0; } if (authInfo.get(ZT_AUTHINFO_DICT_KEY_SSO_PROVIDER, ssoProvider, sizeof(ssoProvider)) > 0) { ssoProvider[sizeof(ssoProvider) - 1] = 0; } else { strncpy(ssoProvider, "default", sizeof(ssoProvider)); } network->setAuthenticationRequired(tPtr, issuerURL, centralAuthURL, ssoClientID, ssoProvider, ssoNonce, ssoState); } } } else { network->setAuthenticationRequired(tPtr, ""); } } Metrics::pkt_error_authentication_required_in++; } break; default: break; } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_ERROR, inRePacketId, inReVerb, false, networkId, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doACK(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { /* if (! peer->rateGateACK(RR->node->now())) { return true; } int32_t ackedBytes; if (payloadLength() != sizeof(ackedBytes)) { return true; // ignore } memcpy(&ackedBytes, payload(), sizeof(ackedBytes)); peer->receivedAck(_path, RR->node->now(), Utils::ntoh(ackedBytes)); */ Metrics::pkt_ack_in++; return true; } bool IncomingPacket::_doQOS_MEASUREMENT(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_qos_in++; if (! peer->rateGateQoS(RR->node->now(), _path)) { return true; } if (payloadLength() > ZT_QOS_MAX_PACKET_SIZE || payloadLength() < ZT_QOS_MIN_PACKET_SIZE) { return true; // ignore } const int64_t now = RR->node->now(); uint64_t rx_id[ZT_QOS_TABLE_SIZE]; uint16_t rx_ts[ZT_QOS_TABLE_SIZE]; char* begin = (char*)payload(); char* ptr = begin; int count = 0; unsigned int len = payloadLength(); // Read packet IDs and latency compensation intervals for each packet tracked by this QoS packet while (ptr < (begin + len) && (count < ZT_QOS_TABLE_SIZE)) { memcpy((void*)&rx_id[count], ptr, sizeof(uint64_t)); ptr += sizeof(uint64_t); memcpy((void*)&rx_ts[count], ptr, sizeof(uint16_t)); ptr += sizeof(uint16_t); count++; } peer->receivedQoS(_path, now, count, rx_id, rx_ts); return true; } bool IncomingPacket::_doHELLO(const RuntimeEnvironment* RR, void* tPtr, const bool alreadyAuthenticated) { Metrics::pkt_hello_in++; const int64_t now = RR->node->now(); const uint64_t pid = packetId(); const Address fromAddress(source()); const unsigned int protoVersion = (*this)[ZT_PROTO_VERB_HELLO_IDX_PROTOCOL_VERSION]; const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MAJOR_VERSION]; const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO_IDX_MINOR_VERSION]; const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO_IDX_REVISION); const int64_t timestamp = at(ZT_PROTO_VERB_HELLO_IDX_TIMESTAMP); Identity id; unsigned int ptr = ZT_PROTO_VERB_HELLO_IDX_IDENTITY + id.deserialize(*this, ZT_PROTO_VERB_HELLO_IDX_IDENTITY); if (protoVersion < ZT_PROTO_VERSION_MIN) { RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "protocol version too old"); return true; } if (fromAddress != id.address()) { RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "identity/address mismatch"); return true; } SharedPtr peer(RR->topology->getPeer(tPtr, id.address())); if (peer) { // We already have an identity with this address -- check for collisions if (! alreadyAuthenticated) { if (peer->identity() != id) { // Identity is different from the one we already have -- address collision // Check rate limits if (! RR->node->rateGateIdentityVerification(now, _path->address())) { return true; } uint8_t key[ZT_SYMMETRIC_KEY_SIZE]; if (RR->identity.agree(id, key)) { if (dearmor(key, peer->aesKeysIfSupported(), RR->identity)) { // ensure packet is authentic, otherwise drop RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "address collision"); Packet outp(id.address(), RR->identity.address(), Packet::VERB_ERROR); outp.append((uint8_t)Packet::VERB_HELLO); outp.append((uint64_t)pid); outp.append((uint8_t)Packet::ERROR_IDENTITY_COLLISION); outp.armor(key, true, false, peer->aesKeysIfSupported(), peer->identity()); Metrics::pkt_error_out++; Metrics::pkt_error_identity_collision_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC"); } } else { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid identity"); } return true; } else { // Identity is the same as the one we already have -- check packet integrity if (! dearmor(peer->key(), peer->aesKeysIfSupported(), RR->identity)) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC"); return true; } // Continue at // VALID } } // else if alreadyAuthenticated then continue at // VALID } else { // We don't already have an identity with this address -- validate and learn it // Sanity check: this basically can't happen if (alreadyAuthenticated) { RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "illegal alreadyAuthenticated state"); return true; } // Check rate limits if (! RR->node->rateGateIdentityVerification(now, _path->address())) { RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "rate limit exceeded"); return true; } // Check packet integrity and MAC (this is faster than locallyValidate() so do it first to filter out total crap) SharedPtr newPeer(new Peer(RR, RR->identity, id)); if (! dearmor(newPeer->key(), newPeer->aesKeysIfSupported(), RR->identity)) { RR->t->incomingPacketMessageAuthenticationFailure(tPtr, _path, pid, fromAddress, hops(), "invalid MAC"); return true; } // Check that identity's address is valid as per the derivation function if (! id.locallyValidate()) { RR->t->incomingPacketDroppedHELLO(tPtr, _path, pid, fromAddress, "invalid identity"); return true; } peer = RR->topology->addPeer(tPtr, newPeer); // Continue at // VALID } // VALID -- if we made it here, packet passed identity and authenticity checks! // Get external surface address if present (was not in old versions) InetAddress externalSurfaceAddress; if (ptr < size()) { ptr += externalSurfaceAddress.deserialize(*this, ptr); if ((externalSurfaceAddress) && (hops() == 0)) { RR->sa->iam(tPtr, id.address(), _path->localSocket(), _path->address(), externalSurfaceAddress, RR->topology->isUpstream(id), now); } } // Get primary planet world ID and world timestamp if present uint64_t planetWorldId = 0; uint64_t planetWorldTimestamp = 0; if ((ptr + 16) <= size()) { planetWorldId = at(ptr); ptr += 8; planetWorldTimestamp = at(ptr); ptr += 8; } std::vector > moonIdsAndTimestamps; if (ptr < size()) { // Remainder of packet, if present, is encrypted cryptField(peer->key(), ptr, size() - ptr); // Get moon IDs and timestamps if present if ((ptr + 2) <= size()) { const unsigned int numMoons = at(ptr); ptr += 2; for (unsigned int i = 0; i < numMoons; ++i) { if ((World::Type)(*this)[ptr++] == World::TYPE_MOON) { moonIdsAndTimestamps.push_back(std::pair(at(ptr), at(ptr + 8))); } ptr += 16; } } } // Send OK(HELLO) with an echo of the packet's timestamp and some of the same // information about us: version, sent-to address, etc. Packet outp(id.address(), RR->identity.address(), Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_HELLO); outp.append((uint64_t)pid); outp.append((uint64_t)timestamp); outp.append((unsigned char)ZT_PROTO_VERSION); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR); outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR); outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION); _path->address().serialize(outp); const unsigned int worldUpdateSizeAt = outp.size(); outp.addSize(2); // make room for 16-bit size field if ((planetWorldId) && (RR->topology->planetWorldTimestamp() > planetWorldTimestamp) && (planetWorldId == RR->topology->planetWorldId())) { RR->topology->planet().serialize(outp, false); } if (! moonIdsAndTimestamps.empty()) { std::vector moons(RR->topology->moons()); for (std::vector::const_iterator m(moons.begin()); m != moons.end(); ++m) { for (std::vector >::const_iterator i(moonIdsAndTimestamps.begin()); i != moonIdsAndTimestamps.end(); ++i) { if (i->first == m->id()) { if (m->timestamp() > i->second) { m->serialize(outp, false); } break; } } } } outp.setAt(worldUpdateSizeAt, (uint16_t)(outp.size() - (worldUpdateSizeAt + 2))); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), now); peer->setRemoteVersion(protoVersion, vMajor, vMinor, vRevision); // important for this to go first so received() knows the version peer->received(tPtr, _path, hops(), pid, payloadLength(), Packet::VERB_HELLO, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doOK(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_ok_in++; const Packet::Verb inReVerb = (Packet::Verb)(*this)[ZT_PROTO_VERB_OK_IDX_IN_RE_VERB]; const uint64_t inRePacketId = at(ZT_PROTO_VERB_OK_IDX_IN_RE_PACKET_ID); uint64_t networkId = 0; if (! RR->node->expectingReplyTo(inRePacketId)) { return true; } switch (inReVerb) { case Packet::VERB_HELLO: { const uint64_t latency = RR->node->now() - at(ZT_PROTO_VERB_HELLO__OK__IDX_TIMESTAMP); const unsigned int vProto = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_PROTOCOL_VERSION]; const unsigned int vMajor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MAJOR_VERSION]; const unsigned int vMinor = (*this)[ZT_PROTO_VERB_HELLO__OK__IDX_MINOR_VERSION]; const unsigned int vRevision = at(ZT_PROTO_VERB_HELLO__OK__IDX_REVISION); if (vProto < ZT_PROTO_VERSION_MIN) { return true; } InetAddress externalSurfaceAddress; unsigned int ptr = ZT_PROTO_VERB_HELLO__OK__IDX_REVISION + 2; // Get reported external surface address if present if (ptr < size()) { ptr += externalSurfaceAddress.deserialize(*this, ptr); } // Handle planet or moon updates if present if ((ptr + 2) <= size()) { const unsigned int worldsLen = at(ptr); ptr += 2; if (RR->topology->shouldAcceptWorldUpdateFrom(peer->address())) { const unsigned int endOfWorlds = ptr + worldsLen; while (ptr < endOfWorlds) { World w; ptr += w.deserialize(*this, ptr); RR->topology->addWorld(tPtr, w, false); } } else { ptr += worldsLen; } } if (! hops()) { _path->updateLatency((unsigned int)latency, RR->node->now()); } peer->setRemoteVersion(vProto, vMajor, vMinor, vRevision); if ((externalSurfaceAddress) && (hops() == 0)) { RR->sa->iam(tPtr, peer->address(), _path->localSocket(), _path->address(), externalSurfaceAddress, RR->topology->isUpstream(peer->identity()), RR->node->now()); } } break; case Packet::VERB_WHOIS: if (RR->topology->isUpstream(peer->identity())) { const Identity id(*this, ZT_PROTO_VERB_WHOIS__OK__IDX_IDENTITY); RR->sw->doAnythingWaitingForPeer(tPtr, RR->topology->addPeer(tPtr, SharedPtr(new Peer(RR, RR->identity, id)))); } break; case Packet::VERB_NETWORK_CONFIG_REQUEST: { networkId = at(ZT_PROTO_VERB_OK_IDX_PAYLOAD); const SharedPtr network(RR->node->network(networkId)); if (network) { network->handleConfigChunk(tPtr, packetId(), source(), *this, ZT_PROTO_VERB_OK_IDX_PAYLOAD); } } break; case Packet::VERB_MULTICAST_GATHER: { networkId = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_NETWORK_ID); const SharedPtr network(RR->node->network(networkId)); if (network) { const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_MAC, 6), 6), at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_ADI)); const unsigned int count = at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 4); RR->mc->addMultiple(tPtr, RR->node->now(), networkId, mg, field(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS + 6, count * 5), count, at(ZT_PROTO_VERB_MULTICAST_GATHER__OK__IDX_GATHER_RESULTS)); } } break; case Packet::VERB_MULTICAST_FRAME: { const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_FLAGS]; networkId = at(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_NETWORK_ID); const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_MAC, 6), 6), at(ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_ADI)); const SharedPtr network(RR->node->network(networkId)); if (network) { unsigned int offset = 0; if ((flags & 0x01) != 0) { // deprecated but still used by older peers CertificateOfMembership com; offset += com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS); if (com) { network->addCredential(tPtr, com); } } if ((flags & 0x02) != 0) { // OK(MULTICAST_FRAME) includes implicit gather results offset += ZT_PROTO_VERB_MULTICAST_FRAME__OK__IDX_COM_AND_GATHER_RESULTS; unsigned int totalKnown = at(offset); offset += 4; unsigned int count = at(offset); offset += 2; RR->mc->addMultiple(tPtr, RR->node->now(), networkId, mg, field(offset, count * 5), count, totalKnown); } } } break; default: break; } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_OK, inRePacketId, inReVerb, false, networkId, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doWHOIS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { if ((! RR->topology->amUpstream()) && (! peer->rateGateInboundWhoisRequest(RR->node->now()))) { return true; } Metrics::pkt_whois_in++; Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_WHOIS); outp.append(packetId()); unsigned int count = 0; unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; while ((ptr + ZT_ADDRESS_LENGTH) <= size()) { const Address addr(field(ptr, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH); ptr += ZT_ADDRESS_LENGTH; const Identity id(RR->topology->getIdentity(tPtr, addr)); if (id) { id.serialize(outp, false); ++count; } else { // Request unknown WHOIS from upstream from us (if we have one) RR->sw->requestWhois(tPtr, RR->node->now(), addr); } } if (count > 0) { Metrics::pkt_ok_out++; outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), RR->identity); _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_WHOIS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doRENDEZVOUS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_rendezvous_in++; if (RR->topology->isUpstream(peer->identity())) { const Address with(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ZTADDRESS, ZT_ADDRESS_LENGTH), ZT_ADDRESS_LENGTH); const SharedPtr rendezvousWith(RR->topology->getPeer(tPtr, with)); if (rendezvousWith) { const unsigned int port = at(ZT_PROTO_VERB_RENDEZVOUS_IDX_PORT); const unsigned int addrlen = (*this)[ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRLEN]; if ((port > 0) && ((addrlen == 4) || (addrlen == 16))) { InetAddress atAddr(field(ZT_PROTO_VERB_RENDEZVOUS_IDX_ADDRESS, addrlen), addrlen, port); if (RR->node->shouldUsePathForZeroTierTraffic(tPtr, with, _path->localSocket(), atAddr)) { const uint64_t junk = RR->node->prng(); RR->node->putPacket(tPtr, _path->localSocket(), atAddr, &junk, 4, 2); // send low-TTL junk packet to 'open' local NAT(s) and stateful firewalls rendezvousWith->attemptToContactAt(tPtr, _path->localSocket(), atAddr, RR->node->now(), false); } } } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_RENDEZVOUS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } // Returns true if packet appears valid; pos and proto will be set static bool _ipv6GetPayload(const uint8_t* frameData, unsigned int frameLen, unsigned int& pos, unsigned int& proto) { if (frameLen < 40) { return false; } pos = 40; proto = frameData[6]; while (pos <= frameLen) { switch (proto) { case 0: // hop-by-hop options case 43: // routing case 60: // destination options case 135: // mobility options if ((pos + 8) > frameLen) { return false; // invalid! } proto = frameData[pos]; pos += ((unsigned int)frameData[pos + 1] * 8) + 8; break; // case 44: // fragment -- we currently can't parse these and they are deprecated in IPv6 anyway // case 50: // case 51: // IPSec ESP and AH -- we have to stop here since this is encrypted stuff default: return true; } } return false; // overflow == invalid } bool IncomingPacket::_doFRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer, int32_t flowId) { Metrics::pkt_frame_in++; int32_t _flowId = ZT_QOS_NO_FLOW; if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) { const unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE); const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; const uint8_t* const frameData = reinterpret_cast(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; if (etherType == ZT_ETHERTYPE_IPV4 && (frameLen >= 20)) { uint16_t srcPort = 0; uint16_t dstPort = 0; uint8_t proto = (reinterpret_cast(frameData)[9]); const unsigned int headerLen = 4 * (reinterpret_cast(frameData)[0] & 0xf); switch (proto) { case 0x01: // ICMP // flowId = 0x01; break; // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (headerLen + 4)) { unsigned int pos = headerLen + 0; srcPort = (reinterpret_cast(frameData)[pos++]) << 8; srcPort |= (reinterpret_cast(frameData)[pos]); pos++; dstPort = (reinterpret_cast(frameData)[pos++]) << 8; dstPort |= (reinterpret_cast(frameData)[pos]); _flowId = dstPort ^ srcPort ^ proto; } break; } } if (etherType == ZT_ETHERTYPE_IPV6 && (frameLen >= 40)) { uint16_t srcPort = 0; uint16_t dstPort = 0; unsigned int pos; unsigned int proto; _ipv6GetPayload((const uint8_t*)frameData, frameLen, pos, proto); switch (proto) { case 0x3A: // ICMPv6 // flowId = 0x3A; break; // All these start with 16-bit source and destination port in that order case 0x06: // TCP case 0x11: // UDP case 0x84: // SCTP case 0x88: // UDPLite if (frameLen > (pos + 4)) { srcPort = (reinterpret_cast(frameData)[pos++]) << 8; srcPort |= (reinterpret_cast(frameData)[pos]); pos++; dstPort = (reinterpret_cast(frameData)[pos++]) << 8; dstPort |= (reinterpret_cast(frameData)[pos]); _flowId = dstPort ^ srcPort ^ proto; } break; default: break; } } } const uint64_t nwid = at(ZT_PROTO_VERB_FRAME_IDX_NETWORK_ID); const SharedPtr network(RR->node->network(nwid)); bool trustEstablished = false; if (network) { if (network->gate(tPtr, peer)) { trustEstablished = true; if (size() > ZT_PROTO_VERB_FRAME_IDX_PAYLOAD) { const unsigned int etherType = at(ZT_PROTO_VERB_FRAME_IDX_ETHERTYPE); const MAC sourceMac(peer->address(), nwid); const unsigned int frameLen = size() - ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; const uint8_t* const frameData = reinterpret_cast(data()) + ZT_PROTO_VERB_FRAME_IDX_PAYLOAD; if (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), sourceMac, network->mac(), frameData, frameLen, etherType, 0) > 0) { RR->pm->putFrame(tPtr, nwid, network->userPtr(), sourceMac, network->mac(), etherType, 0, (const void*)frameData, frameLen, _flowId); } } } else { _sendErrorNeedCredentials(RR, tPtr, peer, nwid); return false; } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_FRAME, 0, Packet::VERB_NOP, trustEstablished, nwid, _flowId); return true; } bool IncomingPacket::_doEXT_FRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer, int32_t flowId) { Metrics::pkt_ext_frame_in++; const uint64_t nwid = at(ZT_PROTO_VERB_EXT_FRAME_IDX_NETWORK_ID); const SharedPtr network(RR->node->network(nwid)); if (network) { const unsigned int flags = (*this)[ZT_PROTO_VERB_EXT_FRAME_IDX_FLAGS]; unsigned int comLen = 0; if ((flags & 0x01) != 0) { // inline COM with EXT_FRAME is deprecated but still used with old peers CertificateOfMembership com; comLen = com.deserialize(*this, ZT_PROTO_VERB_EXT_FRAME_IDX_COM); if (com) { network->addCredential(tPtr, com); } } if (! network->gate(tPtr, peer)) { RR->t->incomingNetworkAccessDenied(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, true); _sendErrorNeedCredentials(RR, tPtr, peer, nwid); return false; } if (size() > ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD) { const unsigned int etherType = at(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_ETHERTYPE); const MAC to(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_TO, ZT_PROTO_VERB_EXT_FRAME_LEN_TO), ZT_PROTO_VERB_EXT_FRAME_LEN_TO); const MAC from(field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_FROM, ZT_PROTO_VERB_EXT_FRAME_LEN_FROM), ZT_PROTO_VERB_EXT_FRAME_LEN_FROM); const unsigned int frameLen = size() - (comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD); const uint8_t* const frameData = (const uint8_t*)field(comLen + ZT_PROTO_VERB_EXT_FRAME_IDX_PAYLOAD, frameLen); if ((! from) || (from == network->mac())) { peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay return true; } switch (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), from, to, frameData, frameLen, etherType, 0)) { case 1: if (from != MAC(peer->address(), nwid)) { if (network->config().permitsBridging(peer->address())) { network->learnBridgeRoute(from, peer->address()); } else { RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "bridging not allowed (remote)"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay return true; } } else if (to != network->mac()) { if (to.isMulticast()) { if (network->config().multicastLimit == 0) { RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "multicast disabled"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay return true; } } else if (! network->config().permitsBridging(RR->identity.address())) { RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_EXT_FRAME, from, to, "bridging not allowed (local)"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); // trustEstablished because COM is okay return true; } } // fall through -- 2 means accept regardless of bridging checks or other restrictions case 2: RR->pm->putFrame(tPtr, nwid, network->userPtr(), from, to, etherType, 0, (const void*)frameData, frameLen, flowId); break; } } if ((flags & 0x10) != 0) { // ACK requested Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_EXT_FRAME); outp.append((uint64_t)packetId()); outp.append((uint64_t)nwid); const int64_t now = RR->node->now(); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, true, nwid, flowId); } else { peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_EXT_FRAME, 0, Packet::VERB_NOP, false, nwid, flowId); } return true; } bool IncomingPacket::_doECHO(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_echo_in++; uint64_t now = RR->node->now(); if (! _path->rateGateEchoRequest(now)) { return true; } const uint64_t pid = packetId(); Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_ECHO); outp.append((uint64_t)pid); if (size() > ZT_PACKET_IDX_PAYLOAD) { outp.append(reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD, size() - ZT_PACKET_IDX_PAYLOAD); } outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); peer->received(tPtr, _path, hops(), pid, payloadLength(), Packet::VERB_ECHO, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doMULTICAST_LIKE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_multicast_like_in++; const int64_t now = RR->node->now(); bool authorized = false; uint64_t lastNwid = 0; // Packet contains a series of 18-byte network,MAC,ADI tuples for (unsigned int ptr = ZT_PACKET_IDX_PAYLOAD; ptr < size(); ptr += 18) { const uint64_t nwid = at(ptr); if (nwid != lastNwid) { lastNwid = nwid; SharedPtr network(RR->node->network(nwid)); if (network) { authorized = network->gate(tPtr, peer); } if (! authorized) { authorized = ((RR->topology->amUpstream()) || (RR->node->localControllerHasAuthorized(now, nwid, peer->address()))); } } if (authorized) { RR->mc->add(tPtr, now, nwid, MulticastGroup(MAC(field(ptr + 8, 6), 6), at(ptr + 14)), peer->address()); } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_LIKE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doNETWORK_CREDENTIALS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_network_credentials_in++; if (! peer->rateGateCredentialsReceived(RR->node->now())) { return true; } CertificateOfMembership com; Capability cap; Tag tag; Revocation revocation; CertificateOfOwnership coo; bool trustEstablished = false; SharedPtr network; unsigned int p = ZT_PACKET_IDX_PAYLOAD; while ((p < size()) && ((*this)[p] != 0)) { p += com.deserialize(*this, p); if (com) { network = RR->node->network(com.networkId()); if (network) { switch (network->addCredential(tPtr, com)) { case Membership::ADD_REJECTED: break; case Membership::ADD_ACCEPTED_NEW: case Membership::ADD_ACCEPTED_REDUNDANT: trustEstablished = true; break; case Membership::ADD_DEFERRED_FOR_WHOIS: return false; } } } } ++p; // skip trailing 0 after COMs if present if (p < size()) { // older ZeroTier versions do not send capabilities, tags, or revocations const unsigned int numCapabilities = at(p); p += 2; for (unsigned int i = 0; i < numCapabilities; ++i) { p += cap.deserialize(*this, p); if ((! network) || (network->id() != cap.networkId())) { network = RR->node->network(cap.networkId()); } if (network) { switch (network->addCredential(tPtr, cap)) { case Membership::ADD_REJECTED: break; case Membership::ADD_ACCEPTED_NEW: case Membership::ADD_ACCEPTED_REDUNDANT: trustEstablished = true; break; case Membership::ADD_DEFERRED_FOR_WHOIS: return false; } } } if (p >= size()) { return true; } const unsigned int numTags = at(p); p += 2; for (unsigned int i = 0; i < numTags; ++i) { p += tag.deserialize(*this, p); if ((! network) || (network->id() != tag.networkId())) { network = RR->node->network(tag.networkId()); } if (network) { switch (network->addCredential(tPtr, tag)) { case Membership::ADD_REJECTED: break; case Membership::ADD_ACCEPTED_NEW: case Membership::ADD_ACCEPTED_REDUNDANT: trustEstablished = true; break; case Membership::ADD_DEFERRED_FOR_WHOIS: return false; } } } if (p >= size()) { return true; } const unsigned int numRevocations = at(p); p += 2; for (unsigned int i = 0; i < numRevocations; ++i) { p += revocation.deserialize(*this, p); if ((! network) || (network->id() != revocation.networkId())) { network = RR->node->network(revocation.networkId()); } if (network) { switch (network->addCredential(tPtr, peer->address(), revocation)) { case Membership::ADD_REJECTED: break; case Membership::ADD_ACCEPTED_NEW: case Membership::ADD_ACCEPTED_REDUNDANT: trustEstablished = true; break; case Membership::ADD_DEFERRED_FOR_WHOIS: return false; } } } if (p >= size()) { return true; } const unsigned int numCoos = at(p); p += 2; for (unsigned int i = 0; i < numCoos; ++i) { p += coo.deserialize(*this, p); if ((! network) || (network->id() != coo.networkId())) { network = RR->node->network(coo.networkId()); } if (network) { switch (network->addCredential(tPtr, coo)) { case Membership::ADD_REJECTED: break; case Membership::ADD_ACCEPTED_NEW: case Membership::ADD_ACCEPTED_REDUNDANT: trustEstablished = true; break; case Membership::ADD_DEFERRED_FOR_WHOIS: return false; } } } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_NETWORK_CREDENTIALS, 0, Packet::VERB_NOP, trustEstablished, (network) ? network->id() : 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doNETWORK_CONFIG_REQUEST(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_network_config_request_in++; const uint64_t nwid = at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_NETWORK_ID); const unsigned int hopCount = hops(); const uint64_t requestPacketId = packetId(); if (RR->localNetworkController) { const unsigned int metaDataLength = (ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN <= size()) ? at(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT_LEN) : 0; const char* metaDataBytes = (metaDataLength != 0) ? (const char*)field(ZT_PROTO_VERB_NETWORK_CONFIG_REQUEST_IDX_DICT, metaDataLength) : (const char*)0; const Dictionary metaData(metaDataBytes, metaDataLength); RR->localNetworkController->request(nwid, (hopCount > 0) ? InetAddress() : _path->address(), requestPacketId, peer->identity(), metaData); } else { Packet outp(peer->address(), RR->identity.address(), Packet::VERB_ERROR); outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST); outp.append(requestPacketId); outp.append((unsigned char)Packet::ERROR_UNSUPPORTED_OPERATION); outp.append(nwid); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); Metrics::pkt_error_out++; Metrics::pkt_error_unsupported_op_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } peer->received(tPtr, _path, hopCount, requestPacketId, payloadLength(), Packet::VERB_NETWORK_CONFIG_REQUEST, 0, Packet::VERB_NOP, false, nwid, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doNETWORK_CONFIG(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_network_config_in++; const SharedPtr network(RR->node->network(at(ZT_PACKET_IDX_PAYLOAD))); if (network) { const uint64_t configUpdateId = network->handleConfigChunk(tPtr, packetId(), source(), *this, ZT_PACKET_IDX_PAYLOAD); if (configUpdateId) { Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK); outp.append((uint8_t)Packet::VERB_ECHO); outp.append((uint64_t)packetId()); outp.append((uint64_t)network->id()); outp.append((uint64_t)configUpdateId); const int64_t now = RR->node->now(); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_NETWORK_CONFIG, 0, Packet::VERB_NOP, false, (network) ? network->id() : 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doMULTICAST_GATHER(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_multicast_gather_in++; const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_NETWORK_ID); const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_GATHER_IDX_FLAGS]; const MulticastGroup mg(MAC(field(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_MAC, 6), 6), at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_ADI)); const unsigned int gatherLimit = at(ZT_PROTO_VERB_MULTICAST_GATHER_IDX_GATHER_LIMIT); const SharedPtr network(RR->node->network(nwid)); if ((flags & 0x01) != 0) { try { CertificateOfMembership com; com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_GATHER_IDX_COM); if ((com) && (network)) { network->addCredential(tPtr, com); } } catch (...) { } // discard invalid COMs } const bool trustEstablished = (network) ? network->gate(tPtr, peer) : false; const int64_t now = RR->node->now(); if ((gatherLimit > 0) && ((trustEstablished) || (RR->topology->amUpstream()) || (RR->node->localControllerHasAuthorized(now, nwid, peer->address())))) { Packet outp(peer->address(), RR->identity.address(), Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_MULTICAST_GATHER); outp.append(packetId()); outp.append(nwid); mg.mac().appendTo(outp); outp.append((uint32_t)mg.adi()); const unsigned int gatheredLocally = RR->mc->gather(peer->address(), nwid, mg, outp, gatherLimit); if (gatheredLocally > 0) { outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), now); } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_GATHER, 0, Packet::VERB_NOP, trustEstablished, nwid, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doMULTICAST_FRAME(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_multicast_frame_in++; const uint64_t nwid = at(ZT_PROTO_VERB_MULTICAST_FRAME_IDX_NETWORK_ID); const unsigned int flags = (*this)[ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FLAGS]; const SharedPtr network(RR->node->network(nwid)); if (network) { // Offset -- size of optional fields added to position of later fields unsigned int offset = 0; if ((flags & 0x01) != 0) { // This is deprecated but may still be sent by old peers CertificateOfMembership com; offset += com.deserialize(*this, ZT_PROTO_VERB_MULTICAST_FRAME_IDX_COM); if (com) { network->addCredential(tPtr, com); } } if (! network->gate(tPtr, peer)) { _sendErrorNeedCredentials(RR, tPtr, peer, nwid); return false; } unsigned int gatherLimit = 0; if ((flags & 0x02) != 0) { gatherLimit = at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_GATHER_LIMIT); offset += 4; } MAC from; if ((flags & 0x04) != 0) { from.setTo(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_SOURCE_MAC, 6), 6); offset += 6; } else { from.fromAddress(peer->address(), nwid); } const MulticastGroup to(MAC(field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_MAC, 6), 6), at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_DEST_ADI)); const unsigned int etherType = at(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_ETHERTYPE); const unsigned int frameLen = size() - (offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME); if (network->config().multicastLimit == 0) { RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_MULTICAST_FRAME, from, to.mac(), "multicast disabled"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, false, nwid, ZT_QOS_NO_FLOW); return true; } if ((frameLen > 0) && (frameLen <= ZT_MAX_MTU)) { if (! to.mac().isMulticast()) { RR->t->incomingPacketInvalid(tPtr, _path, packetId(), source(), hops(), Packet::VERB_MULTICAST_FRAME, "destination not multicast"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay return true; } if ((! from) || (from.isMulticast()) || (from == network->mac())) { RR->t->incomingPacketInvalid(tPtr, _path, packetId(), source(), hops(), Packet::VERB_MULTICAST_FRAME, "invalid source MAC"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay return true; } const uint8_t* const frameData = (const uint8_t*)field(offset + ZT_PROTO_VERB_MULTICAST_FRAME_IDX_FRAME, frameLen); if ((flags & 0x08) && (network->config().isMulticastReplicator(RR->identity.address()))) { RR->mc->send(tPtr, RR->node->now(), network, peer->address(), to, from, etherType, frameData, frameLen); } if (from != MAC(peer->address(), nwid)) { if (network->config().permitsBridging(peer->address())) { network->learnBridgeRoute(from, peer->address()); } else { RR->t->incomingNetworkFrameDropped(tPtr, network, _path, packetId(), size(), peer->address(), Packet::VERB_MULTICAST_FRAME, from, to.mac(), "bridging not allowed (remote)"); peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); // trustEstablished because COM is okay return true; } } if (network->filterIncomingPacket(tPtr, peer, RR->identity.address(), from, to.mac(), frameData, frameLen, etherType, 0) > 0) { RR->node->putFrame(tPtr, nwid, network->userPtr(), from, to.mac(), etherType, 0, (const void*)frameData, frameLen); } } if (gatherLimit) { Packet outp(source(), RR->identity.address(), Packet::VERB_OK); outp.append((unsigned char)Packet::VERB_MULTICAST_FRAME); outp.append(packetId()); outp.append(nwid); to.mac().appendTo(outp); outp.append((uint32_t)to.adi()); outp.append((unsigned char)0x02); // flag 0x02 = contains gather results if (RR->mc->gather(peer->address(), nwid, to, outp, gatherLimit)) { const int64_t now = RR->node->now(); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); peer->recordOutgoingPacket(_path, outp.packetId(), outp.payloadLength(), outp.verb(), ZT_QOS_NO_FLOW, now); Metrics::pkt_ok_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_MULTICAST_FRAME, 0, Packet::VERB_NOP, true, nwid, ZT_QOS_NO_FLOW); } return true; } bool IncomingPacket::_doPUSH_DIRECT_PATHS(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_push_direct_paths_in++; const int64_t now = RR->node->now(); if (! peer->rateGatePushDirectPaths(now)) { peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_PUSH_DIRECT_PATHS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } // Second, limit addresses by scope and type uint8_t countPerScope[ZT_INETADDRESS_MAX_SCOPE + 1][2]; // [][0] is v4, [][1] is v6 memset(countPerScope, 0, sizeof(countPerScope)); unsigned int count = at(ZT_PACKET_IDX_PAYLOAD); unsigned int ptr = ZT_PACKET_IDX_PAYLOAD + 2; while (count--) { // if ptr overflows Buffer will throw unsigned int flags = (*this)[ptr++]; unsigned int extLen = at(ptr); ptr += 2; ptr += extLen; // unused right now unsigned int addrType = (*this)[ptr++]; unsigned int addrLen = (*this)[ptr++]; switch (addrType) { case 4: { const InetAddress a(field(ptr, 4), 4, at(ptr + 4)); if (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && // not being told to forget (! (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now, a)))) && // not already known (RR->node->shouldUsePathForZeroTierTraffic(tPtr, peer->address(), _path->localSocket(), a))) // should use path { if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) { peer->clusterRedirect(tPtr, _path, a, now); } else if (++countPerScope[(int)a.ipScope()][0] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) { peer->attemptToContactAt(tPtr, InetAddress(), a, now, false); } } } break; case 6: { const InetAddress a(field(ptr, 16), 16, at(ptr + 16)); if (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_FORGET_PATH) == 0) && // not being told to forget (! (((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) == 0) && (peer->hasActivePathTo(now, a)))) && // not already known (RR->node->shouldUsePathForZeroTierTraffic(tPtr, peer->address(), _path->localSocket(), a))) // should use path { if ((flags & ZT_PUSH_DIRECT_PATHS_FLAG_CLUSTER_REDIRECT) != 0) { peer->clusterRedirect(tPtr, _path, a, now); } else if (++countPerScope[(int)a.ipScope()][1] <= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY) { peer->attemptToContactAt(tPtr, InetAddress(), a, now, false); } } } break; } ptr += addrLen; } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_PUSH_DIRECT_PATHS, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doUSER_MESSAGE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_user_message_in++; if (likely(size() >= (ZT_PACKET_IDX_PAYLOAD + 8))) { ZT_UserMessage um; um.origin = peer->address().toInt(); um.typeId = at(ZT_PACKET_IDX_PAYLOAD); um.data = reinterpret_cast(reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD + 8); um.length = size() - (ZT_PACKET_IDX_PAYLOAD + 8); RR->node->postEvent(tPtr, ZT_EVENT_USER_MESSAGE, reinterpret_cast(&um)); } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_USER_MESSAGE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doREMOTE_TRACE(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_remote_trace_in++; ZT_RemoteTrace rt; const char* ptr = reinterpret_cast(data()) + ZT_PACKET_IDX_PAYLOAD; const char* const eof = reinterpret_cast(data()) + size(); rt.origin = peer->address().toInt(); rt.data = const_cast(ptr); // start of first string while (ptr < eof) { if (! *ptr) { // end of string rt.len = (unsigned int)(ptr - rt.data); if ((rt.len > 0) && (rt.len <= ZT_MAX_REMOTE_TRACE_SIZE)) { RR->node->postEvent(tPtr, ZT_EVENT_REMOTE_TRACE, &rt); } rt.data = const_cast(++ptr); // start of next string, if any } else { ++ptr; } } peer->received(tPtr, _path, hops(), packetId(), payloadLength(), Packet::VERB_REMOTE_TRACE, 0, Packet::VERB_NOP, false, 0, ZT_QOS_NO_FLOW); return true; } bool IncomingPacket::_doPATH_NEGOTIATION_REQUEST(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer) { Metrics::pkt_path_negotiation_request_in++; uint64_t now = RR->node->now(); if (! peer->rateGatePathNegotiation(now, _path)) { return true; } if (payloadLength() != sizeof(int16_t)) { return true; } int16_t remoteUtility = 0; memcpy(&remoteUtility, payload(), sizeof(int16_t)); peer->processIncomingPathNegotiationRequest(now, _path, Utils::ntoh(remoteUtility)); return true; } void IncomingPacket::_sendErrorNeedCredentials(const RuntimeEnvironment* RR, void* tPtr, const SharedPtr& peer, const uint64_t nwid) { Packet outp(source(), RR->identity.address(), Packet::VERB_ERROR); outp.append((uint8_t)verb()); outp.append(packetId()); outp.append((uint8_t)Packet::ERROR_NEED_MEMBERSHIP_CERTIFICATE); outp.append(nwid); outp.armor(peer->key(), true, false, peer->aesKeysIfSupported(), peer->identity()); Metrics::pkt_error_out++; Metrics::pkt_error_need_membership_cert_out++; _path->send(RR, tPtr, outp.data(), outp.size(), RR->node->now()); } } // namespace ZeroTier