ZeroTierOne/node/Node.cpp

1033 lines
33 KiB
C++

/*
* Copyright (c)2013-2020 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <string.h>
#include <stdint.h>
#include "../version.h"
#include "Constants.hpp"
#include "SharedPtr.hpp"
#include "Node.hpp"
#include "RuntimeEnvironment.hpp"
#include "NetworkController.hpp"
#include "Switch.hpp"
#include "Multicaster.hpp"
#include "Topology.hpp"
#include "Buffer.hpp"
#include "Packet.hpp"
#include "Address.hpp"
#include "Identity.hpp"
#include "SelfAwareness.hpp"
#include "Network.hpp"
#include "Trace.hpp"
namespace ZeroTier {
/****************************************************************************/
/* Public Node interface (C++, exposed via CAPI bindings) */
/****************************************************************************/
Node::Node(void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now) :
_RR(this),
RR(&_RR),
_uPtr(uptr),
_networks(8),
_now(now),
_lastPingCheck(0),
_lastGratuitousPingCheck(0),
_lastHousekeepingRun(0),
_lastMemoizedTraceSettings(0)
{
if (callbacks->version != 0)
throw ZT_EXCEPTION_INVALID_ARGUMENT;
memcpy(&_cb,callbacks,sizeof(ZT_Node_Callbacks));
// Initialize non-cryptographic PRNG from a good random source
Utils::getSecureRandom((void *)_prngState,sizeof(_prngState));
_online = false;
memset(_expectingRepliesToBucketPtr,0,sizeof(_expectingRepliesToBucketPtr));
memset(_expectingRepliesTo,0,sizeof(_expectingRepliesTo));
memset(_lastIdentityVerification,0,sizeof(_lastIdentityVerification));
memset((void *)(&_stats),0,sizeof(_stats));
uint64_t idtmp[2];
idtmp[0] = 0; idtmp[1] = 0;
char tmp[2048];
int n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,tmp,sizeof(tmp) - 1);
if (n > 0) {
tmp[n] = (char)0;
if (RR->identity.fromString(tmp)) {
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
} else {
n = -1;
}
}
if (n <= 0) {
RR->identity.generate();
RR->identity.toString(false,RR->publicIdentityStr);
RR->identity.toString(true,RR->secretIdentityStr);
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_SECRET,idtmp,RR->secretIdentityStr,(unsigned int)strlen(RR->secretIdentityStr));
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
} else {
idtmp[0] = RR->identity.address().toInt(); idtmp[1] = 0;
n = stateObjectGet(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,tmp,sizeof(tmp) - 1);
if ((n > 0)&&(n < (int)sizeof(RR->publicIdentityStr))&&(n < (int)sizeof(tmp))) {
if (memcmp(tmp,RR->publicIdentityStr,n))
stateObjectPut(tptr,ZT_STATE_OBJECT_IDENTITY_PUBLIC,idtmp,RR->publicIdentityStr,(unsigned int)strlen(RR->publicIdentityStr));
}
}
char *m = (char *)0;
try {
const unsigned long ts = sizeof(Trace) + (((sizeof(Trace) & 0xf) != 0) ? (16 - (sizeof(Trace) & 0xf)) : 0);
const unsigned long sws = sizeof(Switch) + (((sizeof(Switch) & 0xf) != 0) ? (16 - (sizeof(Switch) & 0xf)) : 0);
const unsigned long mcs = sizeof(Multicaster) + (((sizeof(Multicaster) & 0xf) != 0) ? (16 - (sizeof(Multicaster) & 0xf)) : 0);
const unsigned long topologys = sizeof(Topology) + (((sizeof(Topology) & 0xf) != 0) ? (16 - (sizeof(Topology) & 0xf)) : 0);
const unsigned long sas = sizeof(SelfAwareness) + (((sizeof(SelfAwareness) & 0xf) != 0) ? (16 - (sizeof(SelfAwareness) & 0xf)) : 0);
const unsigned long bc = sizeof(Bond) + (((sizeof(Bond) & 0xf) != 0) ? (16 - (sizeof(Bond) & 0xf)) : 0);
m = reinterpret_cast<char *>(::malloc(16 + ts + sws + mcs + topologys + sas + bc));
if (!m)
throw std::bad_alloc();
RR->rtmem = m;
while (((uintptr_t)m & 0xf) != 0) ++m;
RR->t = new (m) Trace(RR);
m += ts;
RR->sw = new (m) Switch(RR);
m += sws;
RR->mc = new (m) Multicaster(RR);
m += mcs;
RR->topology = new (m) Topology(RR,tptr);
m += topologys;
RR->sa = new (m) SelfAwareness(RR);
m += sas;
RR->bc = new (m) Bond(RR);
} catch ( ... ) {
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->mc) RR->mc->~Multicaster();
if (RR->sw) RR->sw->~Switch();
if (RR->t) RR->t->~Trace();
if (RR->bc) RR->bc->~Bond();
::free(m);
throw;
}
postEvent(tptr,ZT_EVENT_UP);
}
Node::~Node()
{
{
Mutex::Lock _l(_networks_m);
_networks.clear(); // destroy all networks before shutdown
}
if (RR->sa) RR->sa->~SelfAwareness();
if (RR->topology) RR->topology->~Topology();
if (RR->mc) RR->mc->~Multicaster();
if (RR->sw) RR->sw->~Switch();
if (RR->t) RR->t->~Trace();
if (RR->bc) RR->bc->~Bond();
::free(RR->rtmem);
}
ZT_ResultCode Node::processWirePacket(
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
RR->sw->onRemotePacket(tptr,localSocket,*(reinterpret_cast<const InetAddress *>(remoteAddress)),packetData,packetLength);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::processVirtualNetworkFrame(
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
RR->sw->onLocalEthernet(tptr,nw,MAC(sourceMac),MAC(destMac),etherType,vlanId,frameData,frameLength);
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
// Closure used to ping upstream and active/online peers
class _PingPeersThatNeedPing
{
public:
_PingPeersThatNeedPing(const RuntimeEnvironment *renv,void *tPtr,Hashtable< Address,std::vector<InetAddress> > &alwaysContact,int64_t now) :
RR(renv),
_tPtr(tPtr),
_alwaysContact(alwaysContact),
_now(now),
_bestCurrentUpstream(RR->topology->getUpstreamPeer())
{
}
inline void operator()(Topology &t,const SharedPtr<Peer> &p)
{
const std::vector<InetAddress> *const alwaysContactEndpoints = _alwaysContact.get(p->address());
if (alwaysContactEndpoints) {
const unsigned int sent = p->doPingAndKeepalive(_tPtr,_now);
bool contacted = (sent != 0);
if ((sent & 0x1) == 0) { // bit 0x1 == IPv4 sent
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET) {
p->sendHELLO(_tPtr,-1,addr,_now);
contacted = true;
break;
}
}
}
if ((sent & 0x2) == 0) { // bit 0x2 == IPv6 sent
for(unsigned long k=0,ptr=(unsigned long)RR->node->prng();k<(unsigned long)alwaysContactEndpoints->size();++k) {
const InetAddress &addr = (*alwaysContactEndpoints)[ptr++ % alwaysContactEndpoints->size()];
if (addr.ss_family == AF_INET6) {
p->sendHELLO(_tPtr,-1,addr,_now);
contacted = true;
break;
}
}
}
if ((!contacted)&&(_bestCurrentUpstream)) {
const SharedPtr<Path> up(_bestCurrentUpstream->getAppropriatePath(_now,true));
if (up)
p->sendHELLO(_tPtr,up->localSocket(),up->address(),_now);
}
_alwaysContact.erase(p->address()); // after this we'll WHOIS all upstreams that remain
} else if (p->isActive(_now)) {
p->doPingAndKeepalive(_tPtr,_now);
}
}
private:
const RuntimeEnvironment *RR;
void *_tPtr;
Hashtable< Address,std::vector<InetAddress> > &_alwaysContact;
const int64_t _now;
const SharedPtr<Peer> _bestCurrentUpstream;
};
ZT_ResultCode Node::processBackgroundTasks(void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
{
_now = now;
Mutex::Lock bl(_backgroundTasksLock);
// Process background bond tasks
unsigned long bondCheckInterval = ZT_PING_CHECK_INVERVAL;
if (RR->bc->inUse()) {
bondCheckInterval = std::max(RR->bc->minReqMonitorInterval(), ZT_CORE_TIMER_TASK_GRANULARITY);
if ((now - _lastGratuitousPingCheck) >= ZT_CORE_TIMER_TASK_GRANULARITY) {
_lastGratuitousPingCheck = now;
RR->bc->processBackgroundTasks(tptr, now);
}
}
unsigned long timeUntilNextPingCheck = ZT_PING_CHECK_INVERVAL;
const int64_t timeSinceLastPingCheck = now - _lastPingCheck;
if (timeSinceLastPingCheck >= timeUntilNextPingCheck) {
try {
_lastPingCheck = now;
// Get designated VL1 upstreams
Hashtable< Address,std::vector<InetAddress> > alwaysContact;
RR->topology->getUpstreamsToContact(alwaysContact);
// Uncomment to dump stats
/*
for(unsigned int i=0;i<32;i++) {
if (_stats.inVerbCounts[i] > 0)
printf("%.2x\t%12lld %lld\n",i,(unsigned long long)_stats.inVerbCounts[i],(unsigned long long)_stats.inVerbBytes[i]);
}
printf("\n");
*/
// Check last receive time on designated upstreams to see if we seem to be online
int64_t lastReceivedFromUpstream = 0;
{
Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
Address *upstreamAddress = (Address *)0;
std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
while (i.next(upstreamAddress,upstreamStableEndpoints)) {
SharedPtr<Peer> p(RR->topology->getPeerNoCache(*upstreamAddress));
if (p)
lastReceivedFromUpstream = std::max(p->lastReceive(),lastReceivedFromUpstream);
}
}
// Clean up any old local controller auth memorizations.
{
_localControllerAuthorizations_m.lock();
Hashtable< _LocalControllerAuth,int64_t >::Iterator i(_localControllerAuthorizations);
_LocalControllerAuth *k = (_LocalControllerAuth *)0;
int64_t *v = (int64_t *)0;
while (i.next(k,v)) {
if ((*v - now) > (ZT_NETWORK_AUTOCONF_DELAY * 3))
_localControllerAuthorizations.erase(*k);
}
_localControllerAuthorizations_m.unlock();
}
// Get peers we should stay connected to according to network configs
// Also get networks and whether they need config so we only have to do one pass over networks
std::vector< std::pair< SharedPtr<Network>,bool > > networkConfigNeeded;
{
Mutex::Lock l(_networks_m);
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
uint64_t *nwid = (uint64_t *)0;
SharedPtr<Network> *network = (SharedPtr<Network> *)0;
while (i.next(nwid,network)) {
(*network)->config().alwaysContactAddresses(alwaysContact);
networkConfigNeeded.push_back( std::pair< SharedPtr<Network>,bool >(*network,(((now - (*network)->lastConfigUpdate()) >= ZT_NETWORK_AUTOCONF_DELAY)||(!(*network)->hasConfig()))) );
}
}
// Ping active peers, upstreams, and others that we should always contact
_PingPeersThatNeedPing pfunc(RR,tptr,alwaysContact,now);
RR->topology->eachPeer<_PingPeersThatNeedPing &>(pfunc);
// Run WHOIS to create Peer for alwaysContact addresses that could not be contacted
{
Hashtable< Address,std::vector<InetAddress> >::Iterator i(alwaysContact);
Address *upstreamAddress = (Address *)0;
std::vector<InetAddress> *upstreamStableEndpoints = (std::vector<InetAddress> *)0;
while (i.next(upstreamAddress,upstreamStableEndpoints))
RR->sw->requestWhois(tptr,now,*upstreamAddress);
}
// Refresh network config or broadcast network updates to members as needed
for(std::vector< std::pair< SharedPtr<Network>,bool > >::const_iterator n(networkConfigNeeded.begin());n!=networkConfigNeeded.end();++n) {
if (n->second)
n->first->requestConfiguration(tptr);
n->first->sendUpdatesToMembers(tptr);
}
// Update online status, post status change as event
const bool oldOnline = _online;
_online = (((now - lastReceivedFromUpstream) < ZT_PEER_ACTIVITY_TIMEOUT)||(RR->topology->amUpstream()));
if (oldOnline != _online)
postEvent(tptr,_online ? ZT_EVENT_ONLINE : ZT_EVENT_OFFLINE);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
} else {
timeUntilNextPingCheck -= (unsigned long)timeSinceLastPingCheck;
}
if ((now - _lastMemoizedTraceSettings) >= (ZT_HOUSEKEEPING_PERIOD / 4)) {
_lastMemoizedTraceSettings = now;
RR->t->updateMemoizedSettings();
}
if ((now - _lastHousekeepingRun) >= ZT_HOUSEKEEPING_PERIOD) {
_lastHousekeepingRun = now;
try {
RR->topology->doPeriodicTasks(tptr,now);
RR->sa->clean(now);
RR->mc->clean(now);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
try {
*nextBackgroundTaskDeadline = now + (int64_t)std::max(std::min(bondCheckInterval,std::min(timeUntilNextPingCheck,RR->sw->doTimerTasks(tptr,now))),(unsigned long)ZT_CORE_TIMER_TASK_GRANULARITY);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
return ZT_RESULT_OK;
}
ZT_ResultCode Node::join(uint64_t nwid,void *uptr,void *tptr)
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> &nw = _networks[nwid];
if (!nw)
nw = SharedPtr<Network>(new Network(RR,tptr,nwid,uptr,(const NetworkConfig *)0));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::leave(uint64_t nwid,void **uptr,void *tptr)
{
ZT_VirtualNetworkConfig ctmp;
void **nUserPtr = (void **)0;
{
Mutex::Lock _l(_networks_m);
SharedPtr<Network> *nw = _networks.get(nwid);
RR->sw->removeNetworkQoSControlBlock(nwid);
if (!nw)
return ZT_RESULT_OK;
if (uptr)
*uptr = (*nw)->userPtr();
(*nw)->externalConfig(&ctmp);
(*nw)->destroy();
nUserPtr = (*nw)->userPtr();
}
if (nUserPtr)
RR->node->configureVirtualNetworkPort(tptr,nwid,nUserPtr,ZT_VIRTUAL_NETWORK_CONFIG_OPERATION_DESTROY,&ctmp);
{
Mutex::Lock _l(_networks_m);
_networks.erase(nwid);
}
uint64_t tmp[2];
tmp[0] = nwid; tmp[1] = 0;
RR->node->stateObjectDelete(tptr,ZT_STATE_OBJECT_NETWORK_CONFIG,tmp);
return ZT_RESULT_OK;
}
ZT_ResultCode Node::multicastSubscribe(void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastSubscribe(tptr,MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::multicastUnsubscribe(uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
SharedPtr<Network> nw(this->network(nwid));
if (nw) {
nw->multicastUnsubscribe(MulticastGroup(MAC(multicastGroup),(uint32_t)(multicastAdi & 0xffffffff)));
return ZT_RESULT_OK;
} else return ZT_RESULT_ERROR_NETWORK_NOT_FOUND;
}
ZT_ResultCode Node::orbit(void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
RR->topology->addMoon(tptr,moonWorldId,Address(moonSeed));
return ZT_RESULT_OK;
}
ZT_ResultCode Node::deorbit(void *tptr,uint64_t moonWorldId)
{
RR->topology->removeMoon(tptr,moonWorldId);
return ZT_RESULT_OK;
}
uint64_t Node::address() const
{
return RR->identity.address().toInt();
}
void Node::status(ZT_NodeStatus *status) const
{
status->address = RR->identity.address().toInt();
status->publicIdentity = RR->publicIdentityStr;
status->secretIdentity = RR->secretIdentityStr;
status->online = _online ? 1 : 0;
}
ZT_PeerList *Node::peers() const
{
std::vector< std::pair< Address,SharedPtr<Peer> > > peers(RR->topology->allPeers());
std::sort(peers.begin(),peers.end());
char *buf = (char *)::malloc(sizeof(ZT_PeerList) + (sizeof(ZT_Peer) * peers.size()));
if (!buf)
return (ZT_PeerList *)0;
ZT_PeerList *pl = (ZT_PeerList *)buf;
pl->peers = (ZT_Peer *)(buf + sizeof(ZT_PeerList));
pl->peerCount = 0;
for(std::vector< std::pair< Address,SharedPtr<Peer> > >::iterator pi(peers.begin());pi!=peers.end();++pi) {
ZT_Peer *p = &(pl->peers[pl->peerCount++]);
p->address = pi->second->address().toInt();
p->isBonded = 0;
if (pi->second->remoteVersionKnown()) {
p->versionMajor = pi->second->remoteVersionMajor();
p->versionMinor = pi->second->remoteVersionMinor();
p->versionRev = pi->second->remoteVersionRevision();
} else {
p->versionMajor = -1;
p->versionMinor = -1;
p->versionRev = -1;
}
p->latency = pi->second->latency(_now);
if (p->latency >= 0xffff)
p->latency = -1;
p->role = RR->topology->role(pi->second->identity().address());
std::vector< SharedPtr<Path> > paths(pi->second->paths(_now));
SharedPtr<Path> bestp(pi->second->getAppropriatePath(_now,false));
p->pathCount = 0;
for(std::vector< SharedPtr<Path> >::iterator path(paths.begin());path!=paths.end();++path) {
if((*path)->valid()) {
memcpy(&(p->paths[p->pathCount].address),&((*path)->address()),sizeof(struct sockaddr_storage));
p->paths[p->pathCount].localSocket = (*path)->localSocket();
p->paths[p->pathCount].lastSend = (*path)->lastOut();
p->paths[p->pathCount].lastReceive = (*path)->lastIn();
p->paths[p->pathCount].trustedPathId = RR->topology->getOutboundPathTrust((*path)->address());
p->paths[p->pathCount].expired = 0;
p->paths[p->pathCount].preferred = ((*path) == bestp) ? 1 : 0;
p->paths[p->pathCount].scope = (*path)->ipScope();
if (pi->second->bond()) {
p->paths[p->pathCount].latencyMean = (*path)->latencyMean();
p->paths[p->pathCount].latencyVariance = (*path)->latencyVariance();
p->paths[p->pathCount].packetLossRatio = (*path)->packetLossRatio();
p->paths[p->pathCount].packetErrorRatio = (*path)->packetErrorRatio();
p->paths[p->pathCount].relativeQuality = (*path)->relativeQuality();
p->paths[p->pathCount].linkSpeed = (*path)->givenLinkSpeed();
p->paths[p->pathCount].bonded = (*path)->bonded();
p->paths[p->pathCount].eligible = (*path)->eligible();
std::string ifname = std::string((*path)->ifname());
memset(p->paths[p->pathCount].ifname, 0x0, std::min((int)ifname.length() + 1, ZT_MAX_PHYSIFNAME));
memcpy(p->paths[p->pathCount].ifname, ifname.c_str(), std::min((int)ifname.length(), ZT_MAX_PHYSIFNAME));
}
++p->pathCount;
}
}
if (pi->second->bond()) {
p->isBonded = pi->second->bond();
p->bondingPolicy = pi->second->bond()->policy();
p->numAliveLinks = pi->second->bond()->getNumAliveLinks();
p->numTotalLinks = pi->second->bond()->getNumTotalLinks();
}
}
return pl;
}
ZT_VirtualNetworkConfig *Node::networkConfig(uint64_t nwid) const
{
Mutex::Lock _l(_networks_m);
const SharedPtr<Network> *nw = _networks.get(nwid);
if (nw) {
ZT_VirtualNetworkConfig *nc = (ZT_VirtualNetworkConfig *)::malloc(sizeof(ZT_VirtualNetworkConfig));
(*nw)->externalConfig(nc);
return nc;
}
return (ZT_VirtualNetworkConfig *)0;
}
ZT_VirtualNetworkList *Node::networks() const
{
Mutex::Lock _l(_networks_m);
char *buf = (char *)::malloc(sizeof(ZT_VirtualNetworkList) + (sizeof(ZT_VirtualNetworkConfig) * _networks.size()));
if (!buf)
return (ZT_VirtualNetworkList *)0;
ZT_VirtualNetworkList *nl = (ZT_VirtualNetworkList *)buf;
nl->networks = (ZT_VirtualNetworkConfig *)(buf + sizeof(ZT_VirtualNetworkList));
nl->networkCount = 0;
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(*const_cast< Hashtable< uint64_t,SharedPtr<Network> > *>(&_networks));
uint64_t *k = (uint64_t *)0;
SharedPtr<Network> *v = (SharedPtr<Network> *)0;
while (i.next(k,v))
(*v)->externalConfig(&(nl->networks[nl->networkCount++]));
return nl;
}
void Node::freeQueryResult(void *qr)
{
if (qr)
::free(qr);
}
int Node::addLocalInterfaceAddress(const struct sockaddr_storage *addr)
{
if (Path::isAddressValidForPath(*(reinterpret_cast<const InetAddress *>(addr)))) {
Mutex::Lock _l(_directPaths_m);
if (std::find(_directPaths.begin(),_directPaths.end(),*(reinterpret_cast<const InetAddress *>(addr))) == _directPaths.end()) {
_directPaths.push_back(*(reinterpret_cast<const InetAddress *>(addr)));
return 1;
}
}
return 0;
}
void Node::clearLocalInterfaceAddresses()
{
Mutex::Lock _l(_directPaths_m);
_directPaths.clear();
}
int Node::sendUserMessage(void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
if (RR->identity.address().toInt() != dest) {
Packet outp(Address(dest),RR->identity.address(),Packet::VERB_USER_MESSAGE);
outp.append(typeId);
outp.append(data,len);
outp.compress();
RR->sw->send(tptr,outp,true);
return 1;
}
} catch ( ... ) {}
return 0;
}
void Node::setNetconfMaster(void *networkControllerInstance)
{
RR->localNetworkController = reinterpret_cast<NetworkController *>(networkControllerInstance);
if (networkControllerInstance)
RR->localNetworkController->init(RR->identity,this);
}
/****************************************************************************/
/* Node methods used only within node/ */
/****************************************************************************/
bool Node::shouldUsePathForZeroTierTraffic(void *tPtr,const Address &ztaddr,const int64_t localSocket,const InetAddress &remoteAddress)
{
if (!Path::isAddressValidForPath(remoteAddress))
return false;
if (RR->topology->isProhibitedEndpoint(ztaddr,remoteAddress))
return false;
{
Mutex::Lock _l(_networks_m);
Hashtable< uint64_t,SharedPtr<Network> >::Iterator i(_networks);
uint64_t *k = (uint64_t *)0;
SharedPtr<Network> *v = (SharedPtr<Network> *)0;
while (i.next(k,v)) {
if ((*v)->hasConfig()) {
for(unsigned int k=0;k<(*v)->config().staticIpCount;++k) {
if ((*v)->config().staticIps[k].containsAddress(remoteAddress))
return false;
}
}
}
}
return ( (_cb.pathCheckFunction) ? (_cb.pathCheckFunction(reinterpret_cast<ZT_Node *>(this),_uPtr,tPtr,ztaddr.toInt(),localSocket,reinterpret_cast<const struct sockaddr_storage *>(&remoteAddress)) != 0) : true);
}
uint64_t Node::prng()
{
// https://en.wikipedia.org/wiki/Xorshift#xorshift.2B
uint64_t x = _prngState[0];
const uint64_t y = _prngState[1];
_prngState[0] = y;
x ^= x << 23;
const uint64_t z = x ^ y ^ (x >> 17) ^ (y >> 26);
_prngState[1] = z;
return z + y;
}
ZT_ResultCode Node::setPhysicalPathConfiguration(const struct sockaddr_storage *pathNetwork, const ZT_PhysicalPathConfiguration *pathConfig)
{
RR->topology->setPhysicalPathConfiguration(pathNetwork,pathConfig);
return ZT_RESULT_OK;
}
World Node::planet() const
{
return RR->topology->planet();
}
std::vector<World> Node::moons() const
{
return RR->topology->moons();
}
void Node::ncSendConfig(uint64_t nwid,uint64_t requestPacketId,const Address &destination,const NetworkConfig &nc,bool sendLegacyFormatConfig)
{
_localControllerAuthorizations_m.lock();
_localControllerAuthorizations[_LocalControllerAuth(nwid,destination)] = now();
_localControllerAuthorizations_m.unlock();
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
n->setConfiguration((void *)0,nc,true);
} else {
Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY> *dconf = new Dictionary<ZT_NETWORKCONFIG_DICT_CAPACITY>();
try {
if (nc.toDictionary(*dconf,sendLegacyFormatConfig)) {
uint64_t configUpdateId = prng();
if (!configUpdateId) ++configUpdateId;
const unsigned int totalSize = dconf->sizeBytes();
unsigned int chunkIndex = 0;
while (chunkIndex < totalSize) {
const unsigned int chunkLen = std::min(totalSize - chunkIndex,(unsigned int)(ZT_PROTO_MAX_PACKET_LENGTH - (ZT_PACKET_IDX_PAYLOAD + 256)));
Packet outp(destination,RR->identity.address(),(requestPacketId) ? Packet::VERB_OK : Packet::VERB_NETWORK_CONFIG);
if (requestPacketId) {
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
}
const unsigned int sigStart = outp.size();
outp.append(nwid);
outp.append((uint16_t)chunkLen);
outp.append((const void *)(dconf->data() + chunkIndex),chunkLen);
outp.append((uint8_t)0); // no flags
outp.append((uint64_t)configUpdateId);
outp.append((uint32_t)totalSize);
outp.append((uint32_t)chunkIndex);
C25519::Signature sig(RR->identity.sign(reinterpret_cast<const uint8_t *>(outp.data()) + sigStart,outp.size() - sigStart));
outp.append((uint8_t)1);
outp.append((uint16_t)ZT_C25519_SIGNATURE_LEN);
outp.append(sig.data,ZT_C25519_SIGNATURE_LEN);
outp.compress();
RR->sw->send((void *)0,outp,true);
chunkIndex += chunkLen;
}
}
delete dconf;
} catch ( ... ) {
delete dconf;
throw;
}
}
}
void Node::ncSendRevocation(const Address &destination,const Revocation &rev)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(rev.networkId()));
if (!n) return;
n->addCredential((void *)0,RR->identity.address(),rev);
} else {
Packet outp(destination,RR->identity.address(),Packet::VERB_NETWORK_CREDENTIALS);
outp.append((uint8_t)0x00);
outp.append((uint16_t)0);
outp.append((uint16_t)0);
outp.append((uint16_t)1);
rev.serialize(outp);
outp.append((uint16_t)0);
RR->sw->send((void *)0,outp,true);
}
}
void Node::ncSendError(uint64_t nwid,uint64_t requestPacketId,const Address &destination,NetworkController::ErrorCode errorCode, const void *errorData, unsigned int errorDataSize)
{
if (destination == RR->identity.address()) {
SharedPtr<Network> n(network(nwid));
if (!n) return;
switch(errorCode) {
case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
n->setNotFound(nullptr);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
n->setAccessDenied(nullptr);
break;
case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED: {
//fprintf(stderr, "\n\nGot auth required\n\n");
break;
}
default: break;
}
} else if (requestPacketId) {
Packet outp(destination,RR->identity.address(),Packet::VERB_ERROR);
outp.append((unsigned char)Packet::VERB_NETWORK_CONFIG_REQUEST);
outp.append(requestPacketId);
switch(errorCode) {
//case NetworkController::NC_ERROR_OBJECT_NOT_FOUND:
//case NetworkController::NC_ERROR_INTERNAL_SERVER_ERROR:
default:
outp.append((unsigned char)Packet::ERROR_OBJ_NOT_FOUND);
break;
case NetworkController::NC_ERROR_ACCESS_DENIED:
outp.append((unsigned char)Packet::ERROR_NETWORK_ACCESS_DENIED_);
break;
case NetworkController::NC_ERROR_AUTHENTICATION_REQUIRED:
outp.append((unsigned char)Packet::ERROR_NETWORK_AUTHENTICATION_REQUIRED);
break;
}
outp.append(nwid);
if ((errorData)&&(errorDataSize > 0)&&(errorDataSize <= 0xffff)) {
outp.append((uint16_t)errorDataSize);
outp.append(errorData, errorDataSize);
}
RR->sw->send((void *)0,outp,true);
} // else we can't send an ERROR() in response to nothing, so discard
}
} // namespace ZeroTier
/****************************************************************************/
/* CAPI bindings */
/****************************************************************************/
extern "C" {
enum ZT_ResultCode ZT_Node_new(ZT_Node **node,void *uptr,void *tptr,const struct ZT_Node_Callbacks *callbacks,int64_t now)
{
*node = (ZT_Node *)0;
try {
*node = reinterpret_cast<ZT_Node *>(new ZeroTier::Node(uptr,tptr,callbacks,now));
return ZT_RESULT_OK;
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch (std::runtime_error &exc) {
return ZT_RESULT_FATAL_ERROR_DATA_STORE_FAILED;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_Node_delete(ZT_Node *node)
{
try {
delete (reinterpret_cast<ZeroTier::Node *>(node));
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_processWirePacket(
ZT_Node *node,
void *tptr,
int64_t now,
int64_t localSocket,
const struct sockaddr_storage *remoteAddress,
const void *packetData,
unsigned int packetLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processWirePacket(tptr,now,localSocket,remoteAddress,packetData,packetLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_OK; // "OK" since invalid packets are simply dropped, but the system is still up
}
}
enum ZT_ResultCode ZT_Node_processVirtualNetworkFrame(
ZT_Node *node,
void *tptr,
int64_t now,
uint64_t nwid,
uint64_t sourceMac,
uint64_t destMac,
unsigned int etherType,
unsigned int vlanId,
const void *frameData,
unsigned int frameLength,
volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processVirtualNetworkFrame(tptr,now,nwid,sourceMac,destMac,etherType,vlanId,frameData,frameLength,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_processBackgroundTasks(ZT_Node *node,void *tptr,int64_t now,volatile int64_t *nextBackgroundTaskDeadline)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->processBackgroundTasks(tptr,now,nextBackgroundTaskDeadline);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_join(ZT_Node *node,uint64_t nwid,void *uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->join(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_leave(ZT_Node *node,uint64_t nwid,void **uptr,void *tptr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->leave(nwid,uptr,tptr);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastSubscribe(ZT_Node *node,void *tptr,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastSubscribe(tptr,nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_multicastUnsubscribe(ZT_Node *node,uint64_t nwid,uint64_t multicastGroup,unsigned long multicastAdi)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->multicastUnsubscribe(nwid,multicastGroup,multicastAdi);
} catch (std::bad_alloc &exc) {
return ZT_RESULT_FATAL_ERROR_OUT_OF_MEMORY;
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_orbit(ZT_Node *node,void *tptr,uint64_t moonWorldId,uint64_t moonSeed)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->orbit(tptr,moonWorldId,moonSeed);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
enum ZT_ResultCode ZT_Node_deorbit(ZT_Node *node,void *tptr,uint64_t moonWorldId)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->deorbit(tptr,moonWorldId);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
uint64_t ZT_Node_address(ZT_Node *node)
{
return reinterpret_cast<ZeroTier::Node *>(node)->address();
}
void ZT_Node_status(ZT_Node *node,ZT_NodeStatus *status)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->status(status);
} catch ( ... ) {}
}
ZT_PeerList *ZT_Node_peers(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->peers();
} catch ( ... ) {
return (ZT_PeerList *)0;
}
}
ZT_VirtualNetworkConfig *ZT_Node_networkConfig(ZT_Node *node,uint64_t nwid)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networkConfig(nwid);
} catch ( ... ) {
return (ZT_VirtualNetworkConfig *)0;
}
}
ZT_VirtualNetworkList *ZT_Node_networks(ZT_Node *node)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->networks();
} catch ( ... ) {
return (ZT_VirtualNetworkList *)0;
}
}
void ZT_Node_freeQueryResult(ZT_Node *node,void *qr)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->freeQueryResult(qr);
} catch ( ... ) {}
}
int ZT_Node_addLocalInterfaceAddress(ZT_Node *node,const struct sockaddr_storage *addr)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->addLocalInterfaceAddress(addr);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_clearLocalInterfaceAddresses(ZT_Node *node)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->clearLocalInterfaceAddresses();
} catch ( ... ) {}
}
int ZT_Node_sendUserMessage(ZT_Node *node,void *tptr,uint64_t dest,uint64_t typeId,const void *data,unsigned int len)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->sendUserMessage(tptr,dest,typeId,data,len);
} catch ( ... ) {
return 0;
}
}
void ZT_Node_setNetconfMaster(ZT_Node *node,void *networkControllerInstance)
{
try {
reinterpret_cast<ZeroTier::Node *>(node)->setNetconfMaster(networkControllerInstance);
} catch ( ... ) {}
}
enum ZT_ResultCode ZT_Node_setPhysicalPathConfiguration(ZT_Node *node,const struct sockaddr_storage *pathNetwork,const ZT_PhysicalPathConfiguration *pathConfig)
{
try {
return reinterpret_cast<ZeroTier::Node *>(node)->setPhysicalPathConfiguration(pathNetwork,pathConfig);
} catch ( ... ) {
return ZT_RESULT_FATAL_ERROR_INTERNAL;
}
}
void ZT_version(int *major,int *minor,int *revision)
{
if (major) *major = ZEROTIER_ONE_VERSION_MAJOR;
if (minor) *minor = ZEROTIER_ONE_VERSION_MINOR;
if (revision) *revision = ZEROTIER_ONE_VERSION_REVISION;
}
} // extern "C"