mirror of
https://github.com/zerotier/ZeroTierOne.git
synced 2025-01-22 04:18:45 +00:00
387 lines
13 KiB
C++
387 lines
13 KiB
C++
/*
|
|
* Copyright (c)2019 ZeroTier, Inc.
|
|
*
|
|
* Use of this software is governed by the Business Source License included
|
|
* in the LICENSE.TXT file in the project's root directory.
|
|
*
|
|
* Change Date: 2023-01-01
|
|
*
|
|
* On the date above, in accordance with the Business Source License, use
|
|
* of this software will be governed by version 2.0 of the Apache License.
|
|
*/
|
|
/****/
|
|
|
|
#ifndef ZT_LOCATOR_HPP
|
|
#define ZT_LOCATOR_HPP
|
|
|
|
#include "Constants.hpp"
|
|
#include "Identity.hpp"
|
|
#include "InetAddress.hpp"
|
|
#include "Utils.hpp"
|
|
#include "Buffer.hpp"
|
|
#include "SHA512.hpp"
|
|
#include "Str.hpp"
|
|
#include "ScopedPtr.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <vector>
|
|
|
|
#define ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES 255
|
|
#define ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES 255
|
|
|
|
namespace ZeroTier {
|
|
|
|
/**
|
|
* Signed information about a node's location on the network
|
|
*
|
|
* A locator is a signed record that contains information about where a node
|
|
* may be found. It can contain static physical addresses or virtual ZeroTier
|
|
* addresses of nodes that can forward to the target node. Locator records
|
|
* can be stored in signed DNS TXT record sets, in LF by roots, in caches,
|
|
* etc. Version 2.x nodes can sign their own locators. Roots can create
|
|
* signed locators using their own signature for version 1.x nodes. Locators
|
|
* signed by the node whose location they describe always take precedence
|
|
* over locators signed by other nodes.
|
|
*/
|
|
class Locator
|
|
{
|
|
public:
|
|
ZT_ALWAYS_INLINE Locator() : _ts(0),_signatureLength(0) {}
|
|
|
|
ZT_ALWAYS_INLINE const Identity &id() const { return _id; }
|
|
ZT_ALWAYS_INLINE const Identity &signer() const { return ((_signedBy) ? _signedBy : _id); }
|
|
ZT_ALWAYS_INLINE int64_t timestamp() const { return _ts; }
|
|
|
|
ZT_ALWAYS_INLINE const std::vector<InetAddress> &phy() const { return _physical; }
|
|
ZT_ALWAYS_INLINE const std::vector<Identity> &virt() const { return _virtual; }
|
|
|
|
/**
|
|
* Add a physical address to this locator (call before finish() to build a new Locator)
|
|
*/
|
|
ZT_ALWAYS_INLINE void add(const InetAddress &ip)
|
|
{
|
|
if (_physical.size() < ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES)
|
|
_physical.push_back(ip);
|
|
}
|
|
|
|
/**
|
|
* Add a forwarding ZeroTier node to this locator (call before finish() to build a new Locator)
|
|
*/
|
|
ZT_ALWAYS_INLINE void add(const Identity &zt)
|
|
{
|
|
if (_virtual.size() < ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES)
|
|
_virtual.push_back(zt);
|
|
}
|
|
|
|
/**
|
|
* Method to be called after add() is called for each address or forwarding node
|
|
*
|
|
* This sets timestamp and ID information and sorts and deduplicates target
|
|
* lists but does not sign the locator. The sign() method should be used after
|
|
* finish().
|
|
*/
|
|
ZT_ALWAYS_INLINE void finish(const Identity &id,const int64_t ts)
|
|
{
|
|
_ts = ts;
|
|
_id = id;
|
|
std::sort(_physical.begin(),_physical.end());
|
|
_physical.erase(std::unique(_physical.begin(),_physical.end()),_physical.end());
|
|
std::sort(_virtual.begin(),_virtual.end());
|
|
_virtual.erase(std::unique(_virtual.begin(),_virtual.end()),_virtual.end());
|
|
}
|
|
|
|
/**
|
|
* Sign this locator (must be called after finish())
|
|
*/
|
|
ZT_ALWAYS_INLINE bool sign(const Identity &signingId)
|
|
{
|
|
if (!signingId.hasPrivate())
|
|
return false;
|
|
if (signingId == _id) {
|
|
_signedBy.zero();
|
|
} else {
|
|
_signedBy = signingId;
|
|
}
|
|
try {
|
|
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
|
|
serialize(*tmp,true);
|
|
_signatureLength = signingId.sign(tmp->data(),tmp->size(),_signature,ZT_SIGNATURE_BUFFER_SIZE);
|
|
return (_signatureLength > 0);
|
|
} catch ( ... ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Verify this locator's signature against its embedded signing identity
|
|
*/
|
|
ZT_ALWAYS_INLINE bool verify() const
|
|
{
|
|
if ((_signatureLength == 0)||(_signatureLength > sizeof(_signature)))
|
|
return false;
|
|
try {
|
|
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
|
|
serialize(*tmp,true);
|
|
const bool ok = (_signedBy) ? _signedBy.verify(tmp->data(),tmp->size(),_signature,_signatureLength) : _id.verify(tmp->data(),tmp->size(),_signature,_signatureLength);
|
|
return ok;
|
|
} catch ( ... ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Make a DNS name contiaining a public key that can sign DNS entries
|
|
*
|
|
* This generates the initial fields of a DNS name that contains an
|
|
* encoded public key. Users may append any domain suffix to this name.
|
|
*
|
|
* @return First field(s) of DNS name
|
|
*/
|
|
static inline Str makeSecureDnsName(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE])
|
|
{
|
|
uint8_t tmp[ZT_ECC384_PUBLIC_KEY_SIZE+2];
|
|
memcpy(tmp,p384SigningKeyPublic,ZT_ECC384_PUBLIC_KEY_SIZE);
|
|
const uint16_t crc = Utils::crc16(tmp,ZT_ECC384_PUBLIC_KEY_SIZE);
|
|
tmp[ZT_ECC384_PUBLIC_KEY_SIZE-2] = (uint8_t)(crc >> 8);
|
|
tmp[ZT_ECC384_PUBLIC_KEY_SIZE-1] = (uint8_t)(crc);
|
|
Str name;
|
|
char b32[128];
|
|
Utils::b32e(tmp,35,b32,sizeof(b32));
|
|
name << b32;
|
|
Utils::b32e(tmp + 35,(ZT_ECC384_PUBLIC_KEY_SIZE+2) - 35,b32,sizeof(b32));
|
|
name << '.';
|
|
name << b32;
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* @return True if a key was found and successfully decoded
|
|
*/
|
|
static inline bool decodeSecureDnsName(const char *name,uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE])
|
|
{
|
|
uint8_t b32[128];
|
|
unsigned int b32ptr = 0;
|
|
char tmp[1024];
|
|
Utils::scopy(tmp,sizeof(tmp),name);
|
|
bool ok = false;
|
|
for(char *saveptr=(char *)0,*p=Utils::stok(tmp,".",&saveptr);p;p=Utils::stok((char *)0,".",&saveptr)) {
|
|
if (b32ptr >= sizeof(b32))
|
|
break;
|
|
int s = Utils::b32d(p,b32 + b32ptr,sizeof(b32) - b32ptr);
|
|
if (s > 0) {
|
|
b32ptr += (unsigned int)s;
|
|
if (b32ptr > 2) {
|
|
const uint16_t crc = Utils::crc16(b32,b32ptr);
|
|
if ((b32[b32ptr-2] == (uint8_t)(crc >> 8))&&(b32[b32ptr-1] == (uint8_t)(crc & 0xff))) {
|
|
ok = true;
|
|
break;
|
|
}
|
|
}
|
|
} else break;
|
|
}
|
|
|
|
if (ok) {
|
|
if (b32ptr == (ZT_ECC384_PUBLIC_KEY_SIZE + 2)) {
|
|
memcpy(p384SigningKeyPublic,b32,ZT_ECC384_PUBLIC_KEY_SIZE);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* Make DNS TXT records for this locator
|
|
*
|
|
* DNS TXT records are signed by an entirely separate key that is added along
|
|
* with DNS names to nodes to allow them to verify DNS results. It's separate
|
|
* from the locator's signature so that a single DNS record can point to more
|
|
* than one locator or be served by things like geo-aware DNS.
|
|
*
|
|
* Right now only NIST P-384 is supported for signing DNS records. NIST EDDSA
|
|
* is used here so that FIPS-only nodes can always use DNS to locate roots as
|
|
* FIPS-only nodes may be required to disable non-FIPS algorithms.
|
|
*/
|
|
inline std::vector<Str> makeTxtRecords(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t p384SigningKeyPrivate[ZT_ECC384_PUBLIC_KEY_SIZE])
|
|
{
|
|
uint8_t s384[48];
|
|
char enc[256];
|
|
|
|
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
|
|
serialize(*tmp,false);
|
|
SHA384(s384,tmp->data(),tmp->size());
|
|
ECC384ECDSASign(p384SigningKeyPrivate,s384,((uint8_t *)tmp->unsafeData()) + tmp->size());
|
|
tmp->addSize(ZT_ECC384_SIGNATURE_SIZE);
|
|
|
|
// Blob must be broken into multiple TXT records that must remain sortable so they are prefixed by a hex value.
|
|
// 186-byte chunks yield 248-byte base64 chunks which leaves some margin below the limit of 255.
|
|
std::vector<Str> txtRecords;
|
|
unsigned int txtRecNo = 0;
|
|
for(unsigned int p=0;p<tmp->size();) {
|
|
unsigned int chunkSize = tmp->size() - p;
|
|
if (chunkSize > 186) chunkSize = 186;
|
|
|
|
Utils::b64e(((const uint8_t *)tmp->data()) + p,chunkSize,enc,sizeof(enc));
|
|
p += chunkSize;
|
|
|
|
txtRecords.push_back(Str());
|
|
txtRecords.back() << Utils::HEXCHARS[(txtRecNo >> 4) & 0xf] << Utils::HEXCHARS[txtRecNo & 0xf] << enc;
|
|
++txtRecNo;
|
|
}
|
|
|
|
return txtRecords;
|
|
}
|
|
|
|
/**
|
|
* Decode TXT records
|
|
*
|
|
* TXT records can be provided as an iterator over std::string, Str, or char *
|
|
* values, and TXT records can be provided in any order. Any oversize or empty
|
|
* entries will be ignored.
|
|
*
|
|
* This method checks the decoded locator's signature using the supplied DNS TXT
|
|
* record signing public key. False is returned if the TXT records are invalid,
|
|
* incomplete, or fail signature check. If true is returned this Locator object
|
|
* now contains the contents of the supplied TXT records.
|
|
*
|
|
* @return True if new Locator is valid
|
|
*/
|
|
template<typename I>
|
|
inline bool decodeTxtRecords(const Str &dnsName,I start,I end)
|
|
{
|
|
uint8_t dec[256],s384[48];
|
|
try {
|
|
std::vector<Str> txtRecords;
|
|
while (start != end) {
|
|
try {
|
|
if (start->length() > 2)
|
|
txtRecords.push_back(*start);
|
|
} catch ( ... ) {} // skip any records that trigger out of bounds exceptions
|
|
++start;
|
|
}
|
|
if (txtRecords.empty())
|
|
return false;
|
|
std::sort(txtRecords.begin(),txtRecords.end());
|
|
|
|
ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>());
|
|
for(std::vector<Str>::const_iterator i(txtRecords.begin());i!=txtRecords.end();++i)
|
|
tmp->append(dec,Utils::b64d(i->c_str() + 2,dec,sizeof(dec)));
|
|
|
|
uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE];
|
|
if (decodeSecureDnsName(dnsName.c_str(),p384SigningKeyPublic)) {
|
|
if (tmp->size() <= ZT_ECC384_SIGNATURE_SIZE)
|
|
return false;
|
|
SHA384(s384,tmp->data(),tmp->size() - ZT_ECC384_SIGNATURE_SIZE);
|
|
if (!ECC384ECDSAVerify(p384SigningKeyPublic,s384,((const uint8_t *)tmp->data()) + (tmp->size() - ZT_ECC384_SIGNATURE_SIZE)))
|
|
return false;
|
|
}
|
|
|
|
deserialize(*tmp,0);
|
|
|
|
return verify();
|
|
} catch ( ... ) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<unsigned int C>
|
|
inline void serialize(Buffer<C> &b,const bool forSign = false) const
|
|
{
|
|
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
|
|
|
|
b.append((uint8_t)0); // version/flags, currently 0
|
|
b.append((uint64_t)_ts);
|
|
_id.serialize(b,false);
|
|
if (_signedBy) {
|
|
b.append((uint8_t)1); // number of signers, current max is 1
|
|
_signedBy.serialize(b,false); // be sure not to include private key!
|
|
} else {
|
|
b.append((uint8_t)0); // signer is _id
|
|
}
|
|
b.append((uint8_t)_physical.size());
|
|
for(std::vector<InetAddress>::const_iterator i(_physical.begin());i!=_physical.end();++i)
|
|
i->serialize(b);
|
|
b.append((uint8_t)_virtual.size());
|
|
for(std::vector<Identity>::const_iterator i(_virtual.begin());i!=_virtual.end();++i)
|
|
i->serialize(b,false);
|
|
if (!forSign) {
|
|
b.append((uint16_t)_signatureLength);
|
|
b.append(_signature,_signatureLength);
|
|
}
|
|
b.append((uint16_t)0); // length of additional fields, currently 0
|
|
|
|
if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL);
|
|
}
|
|
|
|
template<unsigned int C>
|
|
inline unsigned int deserialize(const Buffer<C> &b,unsigned int startAt = 0)
|
|
{
|
|
unsigned int p = startAt;
|
|
|
|
if (b[p++] != 0)
|
|
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE;
|
|
_ts = (int64_t)b.template at<uint64_t>(p); p += 8;
|
|
p += _id.deserialize(b,p);
|
|
const unsigned int signerCount = b[p++];
|
|
if (signerCount > 1) /* only one third party signer is currently supported */
|
|
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
|
|
if (signerCount == 1) {
|
|
p += _signedBy.deserialize(b,p);
|
|
} else {
|
|
_signedBy.zero();
|
|
}
|
|
const unsigned int physicalCount = b[p++];
|
|
_physical.resize(physicalCount);
|
|
for(unsigned int i=0;i<physicalCount;++i)
|
|
p += _physical[i].deserialize(b,p);
|
|
const unsigned int virtualCount = b[p++];
|
|
_virtual.resize(virtualCount);
|
|
for(unsigned int i=0;i<virtualCount;++i)
|
|
p += _virtual[i].deserialize(b,p);
|
|
_signatureLength = b.template at<uint16_t>(p); p += 2;
|
|
if (_signatureLength > ZT_SIGNATURE_BUFFER_SIZE)
|
|
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
|
|
memcpy(_signature,b.field(p,_signatureLength),_signatureLength);
|
|
p += _signatureLength;
|
|
p += b.template at<uint16_t>(p); p += 2;
|
|
if (p > b.size())
|
|
throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW;
|
|
|
|
return (p - startAt);
|
|
}
|
|
|
|
ZT_ALWAYS_INLINE operator bool() const { return (_id); }
|
|
|
|
ZT_ALWAYS_INLINE bool addressesEqual(const Locator &l) const { return ((_physical == l._physical)&&(_virtual == l._virtual)); }
|
|
|
|
ZT_ALWAYS_INLINE bool operator==(const Locator &l) const { return ((_ts == l._ts)&&(_id == l._id)&&(_signedBy == l._signedBy)&&(_physical == l._physical)&&(_virtual == l._virtual)&&(_signatureLength == l._signatureLength)&&(memcmp(_signature,l._signature,_signatureLength) == 0)); }
|
|
ZT_ALWAYS_INLINE bool operator!=(const Locator &l) const { return (!(*this == l)); }
|
|
ZT_ALWAYS_INLINE bool operator<(const Locator &l) const
|
|
{
|
|
if (_id < l._id) return true;
|
|
if (_ts < l._ts) return true;
|
|
if (_signedBy < l._signedBy) return true;
|
|
if (_physical < l._physical) return true;
|
|
if (_virtual < l._virtual) return true;
|
|
return false;
|
|
}
|
|
ZT_ALWAYS_INLINE bool operator>(const Locator &l) const { return (l < *this); }
|
|
ZT_ALWAYS_INLINE bool operator<=(const Locator &l) const { return (!(l < *this)); }
|
|
ZT_ALWAYS_INLINE bool operator>=(const Locator &l) const { return (!(*this < l)); }
|
|
|
|
ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)(_id.address().toInt() ^ (uint64_t)_ts); }
|
|
|
|
private:
|
|
int64_t _ts;
|
|
Identity _id;
|
|
Identity _signedBy; // signed by _id if nil/zero
|
|
std::vector<InetAddress> _physical;
|
|
std::vector<Identity> _virtual;
|
|
unsigned int _signatureLength;
|
|
uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE];
|
|
};
|
|
|
|
} // namespace ZeroTier
|
|
|
|
#endif
|