/* * Copyright (c)2019 ZeroTier, Inc. * * Use of this software is governed by the Business Source License included * in the LICENSE.TXT file in the project's root directory. * * Change Date: 2023-01-01 * * On the date above, in accordance with the Business Source License, use * of this software will be governed by version 2.0 of the Apache License. */ /****/ #ifndef ZT_LOCATOR_HPP #define ZT_LOCATOR_HPP #include "Constants.hpp" #include "Identity.hpp" #include "InetAddress.hpp" #include "Utils.hpp" #include "Buffer.hpp" #include "SHA512.hpp" #include "Str.hpp" #include "ScopedPtr.hpp" #include #include #define ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES 255 #define ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES 255 namespace ZeroTier { /** * Signed information about a node's location on the network * * A locator is a signed record that contains information about where a node * may be found. It can contain static physical addresses or virtual ZeroTier * addresses of nodes that can forward to the target node. Locator records * can be stored in signed DNS TXT record sets, in LF by roots, in caches, * etc. Version 2.x nodes can sign their own locators. Roots can create * signed locators using their own signature for version 1.x nodes. Locators * signed by the node whose location they describe always take precedence * over locators signed by other nodes. */ class Locator { public: ZT_ALWAYS_INLINE Locator() : _ts(0),_signatureLength(0) {} ZT_ALWAYS_INLINE const Identity &id() const { return _id; } ZT_ALWAYS_INLINE const Identity &signer() const { return ((_signedBy) ? _signedBy : _id); } ZT_ALWAYS_INLINE int64_t timestamp() const { return _ts; } ZT_ALWAYS_INLINE const std::vector &phy() const { return _physical; } ZT_ALWAYS_INLINE const std::vector &virt() const { return _virtual; } /** * Add a physical address to this locator (call before finish() to build a new Locator) */ ZT_ALWAYS_INLINE void add(const InetAddress &ip) { if (_physical.size() < ZT_LOCATOR_MAX_PHYSICAL_ADDRESSES) _physical.push_back(ip); } /** * Add a forwarding ZeroTier node to this locator (call before finish() to build a new Locator) */ ZT_ALWAYS_INLINE void add(const Identity &zt) { if (_virtual.size() < ZT_LOCATOR_MAX_VIRTUAL_ADDRESSES) _virtual.push_back(zt); } /** * Method to be called after add() is called for each address or forwarding node * * This sets timestamp and ID information and sorts and deduplicates target * lists but does not sign the locator. The sign() method should be used after * finish(). */ ZT_ALWAYS_INLINE void finish(const Identity &id,const int64_t ts) { _ts = ts; _id = id; std::sort(_physical.begin(),_physical.end()); _physical.erase(std::unique(_physical.begin(),_physical.end()),_physical.end()); std::sort(_virtual.begin(),_virtual.end()); _virtual.erase(std::unique(_virtual.begin(),_virtual.end()),_virtual.end()); } /** * Sign this locator (must be called after finish()) */ ZT_ALWAYS_INLINE bool sign(const Identity &signingId) { if (!signingId.hasPrivate()) return false; if (signingId == _id) { _signedBy.zero(); } else { _signedBy = signingId; } try { ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>()); serialize(*tmp,true); _signatureLength = signingId.sign(tmp->data(),tmp->size(),_signature,ZT_SIGNATURE_BUFFER_SIZE); return (_signatureLength > 0); } catch ( ... ) { return false; } } /** * Verify this locator's signature against its embedded signing identity */ ZT_ALWAYS_INLINE bool verify() const { if ((_signatureLength == 0)||(_signatureLength > sizeof(_signature))) return false; try { ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>()); serialize(*tmp,true); const bool ok = (_signedBy) ? _signedBy.verify(tmp->data(),tmp->size(),_signature,_signatureLength) : _id.verify(tmp->data(),tmp->size(),_signature,_signatureLength); return ok; } catch ( ... ) { return false; } } /** * Make a DNS name contiaining a public key that can sign DNS entries * * This generates the initial fields of a DNS name that contains an * encoded public key. Users may append any domain suffix to this name. * * @return First field(s) of DNS name */ static inline Str makeSecureDnsName(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE]) { uint8_t tmp[ZT_ECC384_PUBLIC_KEY_SIZE+2]; memcpy(tmp,p384SigningKeyPublic,ZT_ECC384_PUBLIC_KEY_SIZE); const uint16_t crc = Utils::crc16(tmp,ZT_ECC384_PUBLIC_KEY_SIZE); tmp[ZT_ECC384_PUBLIC_KEY_SIZE-2] = (uint8_t)(crc >> 8); tmp[ZT_ECC384_PUBLIC_KEY_SIZE-1] = (uint8_t)(crc); Str name; char b32[128]; Utils::b32e(tmp,35,b32,sizeof(b32)); name << b32; Utils::b32e(tmp + 35,(ZT_ECC384_PUBLIC_KEY_SIZE+2) - 35,b32,sizeof(b32)); name << '.'; name << b32; return name; } /** * @return True if a key was found and successfully decoded */ static inline bool decodeSecureDnsName(const char *name,uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE]) { uint8_t b32[128]; unsigned int b32ptr = 0; char tmp[1024]; Utils::scopy(tmp,sizeof(tmp),name); bool ok = false; for(char *saveptr=(char *)0,*p=Utils::stok(tmp,".",&saveptr);p;p=Utils::stok((char *)0,".",&saveptr)) { if (b32ptr >= sizeof(b32)) break; int s = Utils::b32d(p,b32 + b32ptr,sizeof(b32) - b32ptr); if (s > 0) { b32ptr += (unsigned int)s; if (b32ptr > 2) { const uint16_t crc = Utils::crc16(b32,b32ptr); if ((b32[b32ptr-2] == (uint8_t)(crc >> 8))&&(b32[b32ptr-1] == (uint8_t)(crc & 0xff))) { ok = true; break; } } } else break; } if (ok) { if (b32ptr == (ZT_ECC384_PUBLIC_KEY_SIZE + 2)) { memcpy(p384SigningKeyPublic,b32,ZT_ECC384_PUBLIC_KEY_SIZE); return true; } } return false; } /** * Make DNS TXT records for this locator * * DNS TXT records are signed by an entirely separate key that is added along * with DNS names to nodes to allow them to verify DNS results. It's separate * from the locator's signature so that a single DNS record can point to more * than one locator or be served by things like geo-aware DNS. * * Right now only NIST P-384 is supported for signing DNS records. NIST EDDSA * is used here so that FIPS-only nodes can always use DNS to locate roots as * FIPS-only nodes may be required to disable non-FIPS algorithms. */ inline std::vector makeTxtRecords(const uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE],const uint8_t p384SigningKeyPrivate[ZT_ECC384_PUBLIC_KEY_SIZE]) { uint8_t s384[48]; char enc[256]; ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>()); serialize(*tmp,false); SHA384(s384,tmp->data(),tmp->size()); ECC384ECDSASign(p384SigningKeyPrivate,s384,((uint8_t *)tmp->unsafeData()) + tmp->size()); tmp->addSize(ZT_ECC384_SIGNATURE_SIZE); // Blob must be broken into multiple TXT records that must remain sortable so they are prefixed by a hex value. // 186-byte chunks yield 248-byte base64 chunks which leaves some margin below the limit of 255. std::vector txtRecords; unsigned int txtRecNo = 0; for(unsigned int p=0;psize();) { unsigned int chunkSize = tmp->size() - p; if (chunkSize > 186) chunkSize = 186; Utils::b64e(((const uint8_t *)tmp->data()) + p,chunkSize,enc,sizeof(enc)); p += chunkSize; txtRecords.push_back(Str()); txtRecords.back() << Utils::HEXCHARS[(txtRecNo >> 4) & 0xf] << Utils::HEXCHARS[txtRecNo & 0xf] << enc; ++txtRecNo; } return txtRecords; } /** * Decode TXT records * * TXT records can be provided as an iterator over std::string, Str, or char * * values, and TXT records can be provided in any order. Any oversize or empty * entries will be ignored. * * This method checks the decoded locator's signature using the supplied DNS TXT * record signing public key. False is returned if the TXT records are invalid, * incomplete, or fail signature check. If true is returned this Locator object * now contains the contents of the supplied TXT records. * * @return True if new Locator is valid */ template inline bool decodeTxtRecords(const Str &dnsName,I start,I end) { uint8_t dec[256],s384[48]; try { std::vector txtRecords; while (start != end) { try { if (start->length() > 2) txtRecords.push_back(*start); } catch ( ... ) {} // skip any records that trigger out of bounds exceptions ++start; } if (txtRecords.empty()) return false; std::sort(txtRecords.begin(),txtRecords.end()); ScopedPtr< Buffer<65536> > tmp(new Buffer<65536>()); for(std::vector::const_iterator i(txtRecords.begin());i!=txtRecords.end();++i) tmp->append(dec,Utils::b64d(i->c_str() + 2,dec,sizeof(dec))); uint8_t p384SigningKeyPublic[ZT_ECC384_PUBLIC_KEY_SIZE]; if (decodeSecureDnsName(dnsName.c_str(),p384SigningKeyPublic)) { if (tmp->size() <= ZT_ECC384_SIGNATURE_SIZE) return false; SHA384(s384,tmp->data(),tmp->size() - ZT_ECC384_SIGNATURE_SIZE); if (!ECC384ECDSAVerify(p384SigningKeyPublic,s384,((const uint8_t *)tmp->data()) + (tmp->size() - ZT_ECC384_SIGNATURE_SIZE))) return false; } deserialize(*tmp,0); return verify(); } catch ( ... ) { return false; } } template inline void serialize(Buffer &b,const bool forSign = false) const { if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); b.append((uint8_t)0); // version/flags, currently 0 b.append((uint64_t)_ts); _id.serialize(b,false); if (_signedBy) { b.append((uint8_t)1); // number of signers, current max is 1 _signedBy.serialize(b,false); // be sure not to include private key! } else { b.append((uint8_t)0); // signer is _id } b.append((uint8_t)_physical.size()); for(std::vector::const_iterator i(_physical.begin());i!=_physical.end();++i) i->serialize(b); b.append((uint8_t)_virtual.size()); for(std::vector::const_iterator i(_virtual.begin());i!=_virtual.end();++i) i->serialize(b,false); if (!forSign) { b.append((uint16_t)_signatureLength); b.append(_signature,_signatureLength); } b.append((uint16_t)0); // length of additional fields, currently 0 if (forSign) b.append((uint64_t)0x7f7f7f7f7f7f7f7fULL); } template inline unsigned int deserialize(const Buffer &b,unsigned int startAt = 0) { unsigned int p = startAt; if (b[p++] != 0) throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_INVALID_TYPE; _ts = (int64_t)b.template at(p); p += 8; p += _id.deserialize(b,p); const unsigned int signerCount = b[p++]; if (signerCount > 1) /* only one third party signer is currently supported */ throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; if (signerCount == 1) { p += _signedBy.deserialize(b,p); } else { _signedBy.zero(); } const unsigned int physicalCount = b[p++]; _physical.resize(physicalCount); for(unsigned int i=0;i(p); p += 2; if (_signatureLength > ZT_SIGNATURE_BUFFER_SIZE) throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; memcpy(_signature,b.field(p,_signatureLength),_signatureLength); p += _signatureLength; p += b.template at(p); p += 2; if (p > b.size()) throw ZT_EXCEPTION_INVALID_SERIALIZED_DATA_OVERFLOW; return (p - startAt); } ZT_ALWAYS_INLINE operator bool() const { return (_id); } ZT_ALWAYS_INLINE bool addressesEqual(const Locator &l) const { return ((_physical == l._physical)&&(_virtual == l._virtual)); } ZT_ALWAYS_INLINE bool operator==(const Locator &l) const { return ((_ts == l._ts)&&(_id == l._id)&&(_signedBy == l._signedBy)&&(_physical == l._physical)&&(_virtual == l._virtual)&&(_signatureLength == l._signatureLength)&&(memcmp(_signature,l._signature,_signatureLength) == 0)); } ZT_ALWAYS_INLINE bool operator!=(const Locator &l) const { return (!(*this == l)); } ZT_ALWAYS_INLINE bool operator<(const Locator &l) const { if (_id < l._id) return true; if (_ts < l._ts) return true; if (_signedBy < l._signedBy) return true; if (_physical < l._physical) return true; if (_virtual < l._virtual) return true; return false; } ZT_ALWAYS_INLINE bool operator>(const Locator &l) const { return (l < *this); } ZT_ALWAYS_INLINE bool operator<=(const Locator &l) const { return (!(l < *this)); } ZT_ALWAYS_INLINE bool operator>=(const Locator &l) const { return (!(*this < l)); } ZT_ALWAYS_INLINE unsigned long hashCode() const { return (unsigned long)(_id.address().toInt() ^ (uint64_t)_ts); } private: int64_t _ts; Identity _id; Identity _signedBy; // signed by _id if nil/zero std::vector _physical; std::vector _virtual; unsigned int _signatureLength; uint8_t _signature[ZT_SIGNATURE_BUFFER_SIZE]; }; } // namespace ZeroTier #endif