ZeroTierOne/node/Peer.cpp

549 lines
17 KiB
C++

/*
* ZeroTier One - Network Virtualization Everywhere
* Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "../version.h"
#include "Constants.hpp"
#include "Peer.hpp"
#include "Node.hpp"
#include "Switch.hpp"
#include "Network.hpp"
#include "SelfAwareness.hpp"
#include "Cluster.hpp"
#include "Packet.hpp"
#include <algorithm>
#define ZT_PEER_PATH_SORT_INTERVAL 5000
namespace ZeroTier {
// Used to send varying values for NAT keepalive
static uint32_t _natKeepaliveBuf = 0;
Peer::Peer(const RuntimeEnvironment *renv,const Identity &myIdentity,const Identity &peerIdentity) :
RR(renv),
_lastUsed(0),
_lastReceive(0),
_lastUnicastFrame(0),
_lastMulticastFrame(0),
_lastAnnouncedTo(0),
_lastDirectPathPushSent(0),
_lastDirectPathPushReceive(0),
_lastPathSort(0),
_vProto(0),
_vMajor(0),
_vMinor(0),
_vRevision(0),
_id(peerIdentity),
_numPaths(0),
_latency(0),
_directPathPushCutoffCount(0),
_networkComs(4),
_lastPushedComs(4)
{
if (!myIdentity.agree(peerIdentity,_key,ZT_PEER_SECRET_KEY_LENGTH))
throw std::runtime_error("new peer identity key agreement failed");
}
void Peer::received(
const InetAddress &localAddr,
const InetAddress &remoteAddr,
unsigned int hops,
uint64_t packetId,
Packet::Verb verb,
uint64_t inRePacketId,
Packet::Verb inReVerb)
{
#ifdef ZT_ENABLE_CLUSTER
bool suboptimalPath = false;
if ((RR->cluster)&&(hops == 0)) {
// Note: findBetterEndpoint() is first since we still want to check
// for a better endpoint even if we don't actually send a redirect.
InetAddress redirectTo;
if ( (RR->cluster->findBetterEndpoint(redirectTo,_id.address(),remoteAddr,false)) && (verb != Packet::VERB_OK)&&(verb != Packet::VERB_ERROR)&&(verb != Packet::VERB_RENDEZVOUS)&&(verb != Packet::VERB_PUSH_DIRECT_PATHS) ) {
if (_vProto >= 5) {
// For newer peers we can send a more idiomatic verb: PUSH_DIRECT_PATHS.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.append((uint16_t)1); // count == 1
outp.append((uint8_t)0); // no flags
outp.append((uint16_t)0); // no extensions
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append((uint8_t)6);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)6);
outp.append((uint8_t)18);
outp.append(redirectTo.rawIpData(),16);
}
outp.append((uint16_t)redirectTo.port());
outp.armor(_key,true);
RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size());
} else {
// For older peers we use RENDEZVOUS to coax them into contacting us elsewhere.
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_RENDEZVOUS);
outp.append((uint8_t)0); // no flags
RR->identity.address().appendTo(outp);
outp.append((uint16_t)redirectTo.port());
if (redirectTo.ss_family == AF_INET) {
outp.append((uint8_t)4);
outp.append(redirectTo.rawIpData(),4);
} else {
outp.append((uint8_t)16);
outp.append(redirectTo.rawIpData(),16);
}
outp.armor(_key,true);
RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size());
}
suboptimalPath = true;
}
}
#endif
const uint64_t now = RR->node->now();
_lastReceive = now;
if ((verb == Packet::VERB_FRAME)||(verb == Packet::VERB_EXT_FRAME))
_lastUnicastFrame = now;
else if (verb == Packet::VERB_MULTICAST_FRAME)
_lastMulticastFrame = now;
if (hops == 0) {
bool pathIsConfirmed = false;
unsigned int np = _numPaths;
for(unsigned int p=0;p<np;++p) {
if ((_paths[p].address() == remoteAddr)&&(_paths[p].localAddress() == localAddr)) {
_paths[p].received(now);
#ifdef ZT_ENABLE_CLUSTER
_paths[p].setClusterSuboptimal(suboptimalPath);
#endif
pathIsConfirmed = true;
break;
}
}
if ((!pathIsConfirmed)&&(RR->node->shouldUsePathForZeroTierTraffic(localAddr,remoteAddr))) {
if (verb == Packet::VERB_OK) {
Path *slot = (Path *)0;
if (np < ZT_MAX_PEER_NETWORK_PATHS) {
slot = &(_paths[np++]);
} else {
uint64_t slotLRmin = 0xffffffffffffffffULL;
for(unsigned int p=0;p<ZT_MAX_PEER_NETWORK_PATHS;++p) {
if (!_paths[p].active(now)) {
slot = &(_paths[p]);
break;
} else if (_paths[p].lastReceived() <= slotLRmin) {
slotLRmin = _paths[p].lastReceived();
slot = &(_paths[p]);
}
}
}
if (slot) {
*slot = Path(localAddr,remoteAddr);
slot->received(now);
#ifdef ZT_ENABLE_CLUSTER
slot->setClusterSuboptimal(suboptimalPath);
#endif
_numPaths = np;
}
#ifdef ZT_ENABLE_CLUSTER
if (RR->cluster)
RR->cluster->broadcastHavePeer(_id);
#endif
} else {
TRACE("got %s via unknown path %s(%s), confirming...",Packet::verbString(verb),_id.address().toString().c_str(),remoteAddr.toString().c_str());
if ( (_vProto >= 5) && ( !((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0)) ) ) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
outp.armor(_key,true);
RR->node->putPacket(localAddr,remoteAddr,outp.data(),outp.size());
} else {
sendHELLO(localAddr,remoteAddr,now);
}
}
}
}
if ((now - _lastAnnouncedTo) >= ((ZT_MULTICAST_LIKE_EXPIRE / 2) - 1000)) {
_lastAnnouncedTo = now;
const std::vector< SharedPtr<Network> > networks(RR->node->allNetworks());
for(std::vector< SharedPtr<Network> >::const_iterator n(networks.begin());n!=networks.end();++n)
(*n)->tryAnnounceMulticastGroupsTo(SharedPtr<Peer>(this));
}
}
void Peer::sendHELLO(const InetAddress &localAddr,const InetAddress &atAddress,uint64_t now,unsigned int ttl)
{
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_HELLO);
outp.append((unsigned char)ZT_PROTO_VERSION);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MAJOR);
outp.append((unsigned char)ZEROTIER_ONE_VERSION_MINOR);
outp.append((uint16_t)ZEROTIER_ONE_VERSION_REVISION);
outp.append(now);
RR->identity.serialize(outp,false);
atAddress.serialize(outp);
outp.append((uint64_t)RR->topology->worldId());
outp.append((uint64_t)RR->topology->worldTimestamp());
outp.armor(_key,false); // HELLO is sent in the clear
RR->node->putPacket(localAddr,atAddress,outp.data(),outp.size(),ttl);
}
bool Peer::doPingAndKeepalive(uint64_t now,int inetAddressFamily)
{
Path *p = (Path *)0;
if (inetAddressFamily != 0) {
p = _getBestPath(now,inetAddressFamily);
} else {
p = _getBestPath(now);
}
if (p) {
if ((now - p->lastReceived()) >= ZT_PEER_DIRECT_PING_DELAY) {
//TRACE("PING %s(%s) after %llums/%llums send/receive inactivity",_id.address().toString().c_str(),p->address().toString().c_str(),now - p->lastSend(),now - p->lastReceived());
sendHELLO(p->localAddress(),p->address(),now);
p->sent(now);
p->pinged(now);
} else if ( ((now - std::max(p->lastSend(),p->lastKeepalive())) >= ZT_NAT_KEEPALIVE_DELAY) && (!p->reliable()) ) {
//TRACE("NAT keepalive %s(%s) after %llums/%llums send/receive inactivity",_id.address().toString().c_str(),p->address().toString().c_str(),now - p->lastSend(),now - p->lastReceived());
_natKeepaliveBuf += (uint32_t)((now * 0x9e3779b1) >> 1); // tumble this around to send constantly varying (meaningless) payloads
RR->node->putPacket(p->localAddress(),p->address(),&_natKeepaliveBuf,sizeof(_natKeepaliveBuf));
p->sentKeepalive(now);
} else {
//TRACE("no PING or NAT keepalive: addr==%s reliable==%d %llums/%llums send/receive inactivity",p->address().toString().c_str(),(int)p->reliable(),now - p->lastSend(),now - p->lastReceived());
}
return true;
}
return false;
}
bool Peer::pushDirectPaths(const InetAddress &localAddr,const InetAddress &toAddress,uint64_t now,bool force)
{
#ifdef ZT_ENABLE_CLUSTER
// Cluster mode disables normal PUSH_DIRECT_PATHS in favor of cluster-based peer redirection
if (RR->cluster)
return false;
#endif
if (!force) {
if ((now - _lastDirectPathPushSent) < ZT_DIRECT_PATH_PUSH_INTERVAL)
return false;
else _lastDirectPathPushSent = now;
}
std::vector<InetAddress> dps(RR->node->directPaths());
std::vector<InetAddress> sym(RR->sa->getSymmetricNatPredictions());
for(unsigned long i=0,added=0;i<sym.size();++i) {
InetAddress tmp(sym[(unsigned long)RR->node->prng() % sym.size()]);
if (std::find(dps.begin(),dps.end(),tmp) == dps.end()) {
dps.push_back(tmp);
if (++added >= ZT_PUSH_DIRECT_PATHS_MAX_PER_SCOPE_AND_FAMILY)
break;
}
}
if (dps.empty())
return false;
#ifdef ZT_TRACE
{
std::string ps;
for(std::vector<InetAddress>::const_iterator p(dps.begin());p!=dps.end();++p) {
if (ps.length() > 0)
ps.push_back(',');
ps.append(p->toString());
}
TRACE("pushing %u direct paths to %s: %s",(unsigned int)dps.size(),_id.address().toString().c_str(),ps.c_str());
}
#endif
std::vector<InetAddress>::const_iterator p(dps.begin());
while (p != dps.end()) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_PUSH_DIRECT_PATHS);
outp.addSize(2); // leave room for count
unsigned int count = 0;
while ((p != dps.end())&&((outp.size() + 24) < 1200)) {
uint8_t addressType = 4;
switch(p->ss_family) {
case AF_INET:
break;
case AF_INET6:
addressType = 6;
break;
default: // we currently only push IP addresses
++p;
continue;
}
outp.append((uint8_t)0); // no flags
outp.append((uint16_t)0); // no extensions
outp.append(addressType);
outp.append((uint8_t)((addressType == 4) ? 6 : 18));
outp.append(p->rawIpData(),((addressType == 4) ? 4 : 16));
outp.append((uint16_t)p->port());
++count;
++p;
}
if (count) {
outp.setAt(ZT_PACKET_IDX_PAYLOAD,(uint16_t)count);
outp.armor(_key,true);
RR->node->putPacket(localAddr,toAddress,outp.data(),outp.size(),0);
}
}
return true;
}
bool Peer::resetWithinScope(InetAddress::IpScope scope,uint64_t now)
{
unsigned int np = _numPaths;
unsigned int x = 0;
unsigned int y = 0;
while (x < np) {
if (_paths[x].address().ipScope() == scope) {
// Resetting a path means sending a HELLO and then forgetting it. If we
// get OK(HELLO) then it will be re-learned.
sendHELLO(_paths[x].localAddress(),_paths[x].address(),now);
} else {
_paths[y++] = _paths[x];
}
++x;
}
_numPaths = y;
return (y < np);
}
void Peer::getBestActiveAddresses(uint64_t now,InetAddress &v4,InetAddress &v6) const
{
uint64_t bestV4 = 0,bestV6 = 0;
for(unsigned int p=0,np=_numPaths;p<np;++p) {
if (_paths[p].active(now)) {
uint64_t lr = _paths[p].lastReceived();
if (lr) {
if (_paths[p].address().isV4()) {
if (lr >= bestV4) {
bestV4 = lr;
v4 = _paths[p].address();
}
} else if (_paths[p].address().isV6()) {
if (lr >= bestV6) {
bestV6 = lr;
v6 = _paths[p].address();
}
}
}
}
}
}
bool Peer::networkMembershipCertificatesAgree(uint64_t nwid,const CertificateOfMembership &com) const
{
Mutex::Lock _l(_networkComs_m);
const _NetworkCom *ourCom = _networkComs.get(nwid);
if (ourCom)
return ourCom->com.agreesWith(com);
return false;
}
bool Peer::validateAndSetNetworkMembershipCertificate(uint64_t nwid,const CertificateOfMembership &com)
{
// Sanity checks
if ((!com)||(com.issuedTo() != _id.address()))
return false;
// Return true if we already have this *exact* COM
{
Mutex::Lock _l(_networkComs_m);
_NetworkCom *ourCom = _networkComs.get(nwid);
if ((ourCom)&&(ourCom->com == com))
return true;
}
// Check signature, log and return if cert is invalid
if (com.signedBy() != Network::controllerFor(nwid)) {
TRACE("rejected network membership certificate for %.16llx signed by %s: signer not a controller of this network",(unsigned long long)_id,com.signedBy().toString().c_str());
return false; // invalid signer
}
if (com.signedBy() == RR->identity.address()) {
// We are the controller: RR->identity.address() == controller() == cert.signedBy()
// So, verify that we signed th cert ourself
if (!com.verify(RR->identity)) {
TRACE("rejected network membership certificate for %.16llx self signed by %s: signature check failed",(unsigned long long)_id,com.signedBy().toString().c_str());
return false; // invalid signature
}
} else {
SharedPtr<Peer> signer(RR->topology->getPeer(com.signedBy()));
if (!signer) {
// This would be rather odd, since this is our controller... could happen
// if we get packets before we've gotten config.
RR->sw->requestWhois(com.signedBy());
return false; // signer unknown
}
if (!com.verify(signer->identity())) {
TRACE("rejected network membership certificate for %.16llx signed by %s: signature check failed",(unsigned long long)_id,com.signedBy().toString().c_str());
return false; // invalid signature
}
}
// If we made it past all those checks, add or update cert in our cert info store
{
Mutex::Lock _l(_networkComs_m);
_networkComs.set(nwid,_NetworkCom(RR->node->now(),com));
}
return true;
}
bool Peer::needsOurNetworkMembershipCertificate(uint64_t nwid,uint64_t now,bool updateLastPushedTime)
{
Mutex::Lock _l(_networkComs_m);
uint64_t &lastPushed = _lastPushedComs[nwid];
const uint64_t tmp = lastPushed;
if (updateLastPushedTime)
lastPushed = now;
return ((now - tmp) >= (ZT_NETWORK_AUTOCONF_DELAY / 3));
}
void Peer::clean(uint64_t now)
{
{
unsigned int np = _numPaths;
unsigned int x = 0;
unsigned int y = 0;
while (x < np) {
if (_paths[x].active(now))
_paths[y++] = _paths[x];
++x;
}
_numPaths = y;
}
{
Mutex::Lock _l(_networkComs_m);
{
uint64_t *k = (uint64_t *)0;
_NetworkCom *v = (_NetworkCom *)0;
Hashtable< uint64_t,_NetworkCom >::Iterator i(_networkComs);
while (i.next(k,v)) {
if ( (!RR->node->belongsToNetwork(*k)) && ((now - v->ts) >= ZT_PEER_NETWORK_COM_EXPIRATION) )
_networkComs.erase(*k);
}
}
{
uint64_t *k = (uint64_t *)0;
uint64_t *v = (uint64_t *)0;
Hashtable< uint64_t,uint64_t >::Iterator i(_lastPushedComs);
while (i.next(k,v)) {
if ((now - *v) > (ZT_NETWORK_AUTOCONF_DELAY * 2))
_lastPushedComs.erase(*k);
}
}
}
}
bool Peer::_checkPath(Path &p,const uint64_t now)
{
if (!p.active(now))
return false;
/* Dead path detection: if we have sent something to this peer and have not
* yet received a reply, double check this path. The majority of outbound
* packets including Ethernet frames do generate some kind of reply either
* immediately or at some point in the near future. This will occasionally
* (every NO_ANSWER_TIMEOUT ms) check paths unnecessarily if traffic that
* does not generate a response is being sent such as multicast announcements
* or frames belonging to unidirectional UDP protocols, but the cost is very
* tiny and the benefit in reliability is very large. This takes care of many
* failure modes including crap NATs that forget links and spurious changes
* to physical network topology that cannot be otherwise detected.
*
* Each time we do this we increment a probation counter in the path. This
* counter is reset on any packet receive over this path. If it reaches the
* MAX_PROBATION threshold the path is considred dead. */
if (
(p.lastSend() > p.lastReceived()) &&
((p.lastSend() - p.lastReceived()) >= ZT_PEER_DEAD_PATH_DETECTION_NO_ANSWER_TIMEOUT) &&
((now - p.lastPing()) >= ZT_PEER_DEAD_PATH_DETECTION_NO_ANSWER_TIMEOUT) &&
(!RR->topology->amRoot())
) {
TRACE("%s(%s) does not seem to be answering in a timely manner, checking if dead (probation == %u)",_id.address().toString().c_str(),p.address().toString().c_str(),p.probation());
if ( (_vProto >= 5) && ( !((_vMajor == 1)&&(_vMinor == 1)&&(_vRevision == 0)) ) ) {
Packet outp(_id.address(),RR->identity.address(),Packet::VERB_ECHO);
outp.armor(_key,true);
p.send(RR,outp.data(),outp.size(),now);
p.pinged(now);
} else {
sendHELLO(p.localAddress(),p.address(),now);
p.sent(now);
p.pinged(now);
}
p.increaseProbation();
}
return true;
}
Path *Peer::_getBestPath(const uint64_t now)
{
Path *bestPath = (Path *)0;
uint64_t bestPathScore = 0;
for(unsigned int i=0;i<_numPaths;++i) {
const uint64_t score = _paths[i].score();
if ((score >= bestPathScore)&&(_checkPath(_paths[i],now))) {
bestPathScore = score;
bestPath = &(_paths[i]);
}
}
return bestPath;
}
Path *Peer::_getBestPath(const uint64_t now,int inetAddressFamily)
{
Path *bestPath = (Path *)0;
uint64_t bestPathScore = 0;
for(unsigned int i=0;i<_numPaths;++i) {
const uint64_t score = _paths[i].score();
if (((int)_paths[i].address().ss_family == inetAddressFamily)&&(score >= bestPathScore)&&(_checkPath(_paths[i],now))) {
bestPathScore = score;
bestPath = &(_paths[i]);
}
}
return bestPath;
}
} // namespace ZeroTier